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Figure credit: Jia, X., Mei, Y., Zhang, J. et al. Sci Rep 5, 17096 (2015). CC BY 4.0
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Figure adapted from Biophysics course booklet by Rienk van Grondelle
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First order perturbation theory:

௠→௡ ௠௡
ଶ Fermi’s golden rule

We arrive at the Förster equation:
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relative orientation of dipoles m and n

distance between pigments m and n
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start with

For any operator, we can go from the Schrödinger to interaction picture using

Doing this for            and taking the time derivative: 

substituting in the Schrödinger-picture Liouville equation:

which gives



after calculating the commutator, we obtain

time-dependence mean 
interaction picture
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1. start with Liouville-von Neumann equation in the interaction picture of 

2. integrate and substitute back

3. We take the trace over the bath (we average over all bath degrees of freedom).
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energy transferenergy transfer

Reminder



Based on our conceptual model of the 
first lecture:

• light causes oscillations in the charges of the pigment molecules
• pigment molecules interact such that excitation (by light) of one 

causes excitation in some others (delocalization)
• the orientation of pigment molecules determine the extent of 

delocalization
• nuclear motion can cause energy transfer between eigenstates (the 

energy is transferred to nuclear vibrations)
• nuclear motions has the form of correlated random noise; the 

correlation function of the charge fluctuation gives information about 
the frequency of the charge fluctuation as well as the nuclear 
vibrations.
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Summary

site 1 site 2

Förster theory

Redfield theory



other methods:

modified Redfield method: includes off-diagonal (in the 
exciton basis) system-bath couplings non-perturbatively.
Hierarchical equations of motion: exact, in the sense 
that they do not require additional assumptions.
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Electric field and polarization

Gauss's law 

No magnetic monopoles

Faraday’s law of induction

Ampère's law

Tomáš Mančal, Charles University, Prague



• Derivation i.t.o. potentials

• in the Coulomb gauge

• Helmholtz theorem

• Relate current density to 
polarization density

Electric field and polarization
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P In the time domain
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Back to linear response

Heaviside
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assume
(for absorption)

Origin of decoherence from lecture 1

can be written as

has form of
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Dipole factor matrix Spectral tensor

Absorption spectrum



Absorption and emission spectra
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Linear dichroism spectroscopy

Light
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Based on our conceptual model of the 
first lecture:

• light causes oscillations in the charges of the pigment molecules
• pigment molecules interact such that excitation (by light) of one 

causes excitation in some others (delocalization)
• the orientation of pigment molecules determine the extent of 

delocalization
• nuclear motion can cause energy transfer between eigenstates (the 

energy is transferred to nuclear vibrations)
• nuclear motions has the form of correlated random noise; the 

correlation function of the charge fluctuation gives information about 
the frequency of the charge fluctuation as well as the nuclear 
vibrations.
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Pump-probe spectroscopy

time
equilibrium

signal

why is pump-probe a third-order technique?
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