Quantum Artificial
Intelligence

Menica Dibenedetto
10 April 2025
Summer School 2025 - STIAS, Stellenbosch, 7-14 April 2025



Administrative info

* Instructor: Menica Dibenedetto (Assistant Professor, Maastricht
University, NL)

e Communication:
domenica.dibenedetto@maastrichtuniversity.nl



mailto:domenica.dibenedetto@maastrichtuniversity.nl

Administrative info

* 2 appointments (lecture/practical)
* Group projects/paper discussion



Who are you?

Go on

www.wooclap.com
Code: UHHIST



http://www.wooclap.com/

Sources

Maria Schuld < .
Francesco Petruccione = Claudio Conti

== ARTIFICIAL

Machine B |\ TELLIGENCE Quantum

Learning = WITH QISKIT M .
. achine
with Quantum |

Computers Learning

Thinking and Exploration in Neural
Network Models for Quantum Science
and Quantum Computing

Second Edition

. C P .
A Springer , = e A Springer




Artificial Intelligence (Al)

* Al was founded as a distinct discipline at the Dartmouth workshop
In 1956.

* The term itself was invented by the American computer scientist
John McCarthy and used in the title of the conference.

* Al is a subfield of computer science that models the mechanisms
of intelligent human behavior.



Definition of Artificial Intelligence (Al)

“Artificial intelligence (Al) refers to systems
that display intelligent behaviour by
analysing their environment and taking

actions — with some degree of autonomy - Sl it Robotics
to achieve specific goals.

Machine learning

Al-based systems can be purely software-
based, acting in the virtual world (e.g.
voice assistants, image analysis software,

search engines, speech and face ezt
recognition systems) or Al can be iy Lo
embedded in hardware devices (e.g. T
advanced robots, autonomous cars, and reasoning

drones or Internet of Things applications).”

European Commission's Communication on Al



Al algorithms
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« Symbolic Al

Computationalism

« Symbolic representation of the domain in which the

problems are solved.

« Statistical Machine Learning
» Distributed representations

 Embodied intelligences

Connectionism

Information is physical



The Emergence of Quantum Artificial Intelligence

Early Foundations (1990s-2000s)

* 1996: Grover's Search Algorithm
 2000s: Theoretical Expansion

* Notable Quantum hardware limitations

Processors

Rise of Quantum Machine Learning (2010s)
 2011: D-Wave Systems introduces quantum annealers
« 2016: IBMreleases its first cloud-accessible quantum

2017 onward: QML algorithms developed (Quantum-enhanced
support vector machines and clustering)

Quantum Al Growth and Industry Support (2019-Present)

* 2019: Google’s quantum supremacy milestone sparked
industry interest Industry leaders (IBM, Google, Rigetti)
released quantum ML libraries

* Key focus areas today: Quantum optimization, classification,
generative models, new learning paradigms....




Questions in search of an answer

* Could the physical nature, as described by quantum physics, also
lead to algorithms that imitate human behavior?

* What are the possibilities for the realization of artificial
Intelligence by means of quantum computation?

* We can add more....



Quantum Computing for Al

Al for Quantum Computing



Quantum Machine Learning

Motivations:

* Quantum Computing can perform linear algebra exponentially faster then
classical computers

* Quantum system can generate patterns in data that classical system can’t

QML may be able to identify and classify patterns that are classically
intractable

(Blu sky initiative, Michigan Engineering)



Machine Learning

* Supervised Learning P(Y|X)
* Discriminative models, Classification, Regression,..
« SVM, NN ...

* Unsupervised Learning P(X = x),
* Discriminative and Generative Models, Clustering, Feutures extraction,
Dimensionality Reduction,..

 Boltzmann Machines, ...

* Reinforcement Learning (Interaction)
* Agent—-Environment paradigm



Quantum Machine Learning

Machine Learning
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Image credit: Maria Schuld and Francesco Petruccione. Supervised learning with quantum computers. Vol. 17. Springer, 2018.



Quantum Machine Learning

Applications of ML in quantum physics Quantum generalizations of ML-type tasks

(1) Estimation and metrology (1) Quantum generalizations: machine

(2) Quantum control and gate design learning of quantum data

(2) (Quantum) learning of quantum pro-

(3) Controlling quantum experiments, and
cesses

machine-assisted research

(4) Condensed matter and many body physics

Quantum enhancements for ML, Quantum learning agents and elements of quan-

1) Quantum perceptrons and neural networks tum Al

2) Quantum computational learning theory (1) Quantum-enhanced learning through

(1)

(2) _ _
(3) Quantum enhancement of learning capacity THUETEESICH
(4)

4 (2) Quantum agent-environment paradigm

Quantum computational algorithmic speed-
ups for learning (3) Towards quantum Al

Machine learning & artificial intelligence in the quantum domain: a review of recent progress To
cite this article: Vedran Dunjko and Hans J Briegel 2018 Rep. Prog. Phys. 81 074001



What to address?

Architectures

Gradients and software integrations

Quantum advantage

|

Quantum Models

\

Generalization

Trainability

Expressability




| ectures Overview

* A bit of definitions

e Basic structure of a QML model

* Data Encoding

* Kernel-based methods and beyond
* Training and Expressability

Practical

* Open Quantum System for ML



A bit of formalism...

Computational basis

_[1
State |0> _lOl |1p>: a1|0>+a2|1 >

* Quantum state |Y >€ H 0
State |1> = ll] |a1|2 + |a2|2 =1 a;eC

* Observable O Hermitian in H
* Norm, inner product (Y |y)



Classical stochastic -> Quantum
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Unitary evolutions
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Density matrix

State Pure Mixed
a = (ag, ay) 0 = aat p =piaa’ +p, AT
ﬂ — (ﬂl! 32)
(M) = = = tr{pM}



Measurement

Computational basis measurement
|ll) > = a’1|0 > +a2|1 >

P,=10><0] P,=]1><1]|

_ 2
p(0)=tr{P,| Y>< (Ijl}:(djlpoldj>=|a1|2 p(1)=|a;]

o, = |0><0|+|1><1]



Quantum Models for Al

Hybrid

Full quantum




Quantum ML System

With classical data

Dataset/Input Dataset/Input

State preparation

Unitary Evolution

Measurement




NISQ Quantum Machine Learning

Variational Quantum Algorithm = variational Circuits = Parametrized Circuits

_________________________________________________________________________________________

Training set

Cost function
Ansatz

Input E
:
g Output
= Classical Computer C(6) = X fi (6, px) | P
- Ansatz ,% PR AR | Quantum state
- COSt functlon Dn" pumzer : J ! Prﬂ'bab]llty distribution

arg min C(9) Bitstring
¢

- Gradients

| Gate sequence
—)- Quantum operator

Hybrid Loop

Cerezo, M., Arrasmith, A., Babbush, R. et al. Variational quantum algorithms. Nat Rev Phys 3, 625-644 (2021).
https://doi.org/10.1038/s42254-021-00348-9



Quantum Machine Learning models

Deterministic Probabilistic
. . Data re-
I licit Explicit
mplici xplici ueleading

Jerbi, Fiderer, Poulsen Nautrup, Kiibler, Briegel & Dunjko, Quantum machine learning beyond kernel methods. Nat. Comm. (2023)



Quantum Machine Learning models

Deterministic

Probabilistic




Variational Quantum Circuits

* Deterministic quantum models
 Example: Variational Quantum Classifier

| x>

* Probabilistic guantum models
 Example: Variational Generator

| x>

U(x, O)

U(x,9)

<y>x,ﬂ

Poly|x)

Po(x)



Deterministic quantum models

N
. . k Y b ‘
X input domain, xeX, 0eR - - - - S(x) = Tyaq nsi(xi)Ti
U(x,0) unitary U(x,0) = W(8)S(x) 8@ & &) =2 = i=1
[Y(x,0)) = U(x,0)|0) ) ] G(a) = p~laG
= 2 K
M Hermittian operator (observable) 0 B gj
e H = E W(8) = Vicws | | WiV
f t k=1

f(x)e = W(x, 0)|M|p(x, 0)) = tr{Mp(x, 6)}

= T
Measurement in diagonal basis p(x,8) = U(x,0)T[0X0|U(x, )

M = Z p | |
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Example: Deterministic quantum models

Variational Quantum Classifier
|d(x)> = Ry(x)|0) [W(x, 6)) = R(6; 6,,65) |p(x))

0) = l(l)] 10>—— R,(X) / / <o,> [1 0]

R(6, 6, 6,) K|

X . . X
COS — —lSIin—
2 2

. . X X
—isin=  cos=
] 2 2

fo(X)=<Y(x, 6) | a,lY(x, 6))=cos(B,) cos(x) - sin(B,) sin(B,) sin(x)

* Binary classifier
* Probabilistic classifier



Probabilistic guantum models

X input domain,Y output domain

[Y(x,6)) = U(x,6)]0)

Generative models

0}

&
5 S W) | — z~pyla
o S(T) _ W () y ~ po(y|z) |8§: (6) T~ po(x)
. r Born Machines

Supervised Unsupervised

M= yly)ol M=) xlx)al
yey xeX

p(ylx) = Kyl (x, 6))I° p(x) = [{x[y (O

f(x)e = (x[[Y(O)X(O)]]x)

M



Example: Probabilistic quantum models

Variational Generator

* Inspired by Boltzmann Machines
* Unsupervised

Bar-or-strips

1W(0)) = %(|1010) +10101) + [1100) + [0011))

|0011) g
4 qubits: visible layer H ; 0011 1010) 1100 0101 0010) SO0 DT00 1000} 1010 G0 L0 T Tor DTy T 0000)
3 ubits: h|dden d l +/1010)]1100)[0101}/0010}|0001}|0100}|1000)|10103[0101}|1110}|1101)|{1011}|0111)|1111}]0000)
qub (unmeasured) layer FEFEREIREEOEERER
Basis state of 7 qubits > Images of 4 qubits 4 B
Injective mapping
W) 1 0
|0000000) » |Y(8)) =W (6)|0000000) > T o0 1

Model: p(x) = [{x|p(6))|% x {0,13®*



Quantum Machine Learning in NISQ

——>

Dataset/Input

Output

State preparation
Unitary Evolution

Measurement



Data Encoding

* State preparation vs Data encoding

* Bottleneck for the runtime of the algorithm

* In QC an efficient algorithm runs in polynomial time in the number of
qubits

* In ML an efficient algorithm runs in polynomial time in the dimension of
the data inputs N and the number of data points M.

* Amplitude-efficient/qubits-efficient
* Data encoding -> Feature map -> Kernel methods



Data Encoding

—_—— \
|Dlll l.l]
10)

0)

* N qubits system in the ground state

nnnnnnn

* Data accessible form a classical memory

* Classical pre-processing? Sometimes it is needed

e Dataset of N-dim real-valued feature vectors

Variational

i F > % \
/ \
\ \_1 /

Optimizer

* Labels? Encoded in qubits entangled with inputs data



Data Encoding

* Basis Encoding

* Amplitude Encoding

* Angle (or phase or rotation) Encoding

* Hamiltonian Encoding

Encoding # qubits Runtime [nput type

Basis Nt O(NT) Single input (binary)
Amplitude log N O(N)Y O(log(N)H* Single input

Angle N O(N) Single input
Hamiltonian log N O(MN)/ Entire dataset

O(log(MN))*




Advanced data encoding for Image Representation

* NEQR: Novel Enhanced Quantum Representation
* QPIE: Quantum Probability Image Encoding

* FRQI: Flexible Representation for Quantum Images
* OQIM: Order-Encoded Quantum Image Model



Basis Encoding

* Convert integer to binary representation

X = bsby_1..byby - b_1b_5 ...b_; ,wheret =1+ 1, + 1,
 Convert binary in guantum state

* The amplitude just mark the result of computation

* Qubit-efficient (n gates at most)

Advantages: Ease of preparation

Disadvantages: Qubit count



Basis Encoding

* Simple Algorithm: flip the qubits representing non-zero bits

0) {xPr -
TN
—wvb —
|U> ,X. - U(b) — nxbi

=0

10) - xbon |-




Basis Encoding

e How to encode a Dataset D?

x™eD: b, = (b, ...,b"), b €{0,1}for i=1,...n

1 M
|D) = \/_M 2 |x™) Sparse!



Amplitude encoding

* Use the amplitude of a quantum state to represent classical data
* Step 1: normalize it to unit length
 Step 2: pad it to zeros if required

Advantages: fewer qubits n=logN, n=logNM, N input features, M instances

Disadvantages: preparation, readout



Amplitude encoding

* Vector

* Dataset

2

-1

Wx) = ) xi)

l

Il
(=

M-1
1
o) = = ZO xmm)

m=

How to prepare this arbitrary state?

W)= ali

l

Amplitude vector of dimension NM

(1 1 M MN\T
A= (X1, e XNy ooy X] s oo r XN )



Amplitude-Efficient state preparation

* Top-down Binary tree (Mo6ttonen)

Cascade of multi-controlled Rotations

Level1  |q,)

00 01 10 1

Level 2 192q1)

000 001 o010 L om 100 110 110 m

Level 3 |g,91q0)

Requires an exponential number of operations regarding the number of qubits



Angle encoding

* Angle more suitable for representing continues values

* Manipulate the phase relationship between qubits using rotation
gates not directly changing their amplitudes

Advantages: linear time in the number of features and qubits

Disadvantages: expensive to encode a dataset at once



Angle encoding

* Scalars can be associated with the time t when implementing a
unitary transformation U(t) = e ‘*defined by an Hamiltonian H.

* A subclass of this strategy uses Pauli rotation gates

* Rotation can be Controlled on qubits

X = (X1,X9, e, Xp)

U(x) = Rx(x1)® ®Rx(xN)

0) -

Ry(x1)

0)

Ry (x2)

0 -

R_\' {."--N )

=

=
e e =

Ry (x3)

R-l{\_l} | s s



Hamiltonian encoding

First approach

Ising based: map the problem to the Ising model

H = —z a;j0;0; — Z h;o;
i

L,j

Advantages: easy to implement

Disadvantages: limited scope



Hamiltonian encoding

Second approach

* Ginen X: Dataset dim MxN, rows: feature vectors

* Associate the Hamiltonian H with a matrix X

* Pre-processing tricks that embed the data matrix into Hermitian matrix Hy = ()?Jr )é)

0) — =
') = eHixt|yp) i P

0j — :

* Hamiltonian encoding allows us to extract eigenvalues of matrices, or to multiply them to an
amplitude vector.

Advantages: natural to encode

Disadvantages: hardware constraints and conditions



Why data encoding is important

* Interpreting data encoding as feature map
* Feature map change the structure of the data in a non-trivial manner

* Except for amplitude encoding, all the strategies perform non-linear
operations in the data



Encoding from a conceptual picture

* Map from input space to state space of the guantum system
 If an inner product is defined on the state space: feature map

Inner product = distance -> learning

* Feature map play a role in Kernel-based ML models



Kernel-based
Quantum Models



Kernel Theory v Quantum models

Feature maps

Q—' P(x) " f(P(x);9)




Kernel Methods in ML

* Solve ML tasks based on the idea of a Similarity Measure (Kernel)



Kernel Methods in ML

* Solve ML tasks based on the idea of a Similarity Measure (Kernel)
* Similarity measure

Name Kernel Hyperparameters
Linear x! x' -

Polynomial (x"x' + c)P peMcelkr
Gaussian eV Ix—=x'|* y eRT
Exponential g VIx=x1| y € RT
Sigmoid tanh(x' x’ + ¢) celk




Kernel Definition

Let X be a non-empty set (input domain). A function
K: XxX - R
Is called Kernel if the Gram matrix K with entries
Kpm = k(x™, x™)

Is positive semi-definite

T~

For any set of inputs D = {x?, ..., x"} € Xand complex numbers c,,...,c,, We have that:

M

z CmCruk(x™, x™) >0

mm'=1



Feature map Definition

* Let X be a non-empty set (input domain)

« H < R" isthe feature space

* Featuremap¢p: X > H € R"

* x = ¢(x)non-linear: p(Ax + uy) # Ap(x) + uep(y)



Kernel & Feature map

* Kernel function can always be written as the inner product of data
mapped in a suitable feature space by a feature map

k(x,y) o (¢, H)
k(x,y) = {p(x), p(¥))3¢

* Expressing a model in terms of kernel function allows us to use
the kernel trick to turn one model into another by replacing kernel



Linear model

* Let’s consider a supervised learning tasks

* Given a dataset of labeled sample (labeled by an unknown
function)
* Label discrete: classification
* Label continuous: regression



Linear Classifiers

Given a set of labeled points
(XiYidi=1..n
X; ER™ y; € {+1,—1}

We want to predict the label of an
unseen point

Find a hyperplane which
separates our labeled data. Use
this as our decision rule



Linear Classifiers

Max Margin
/
/
V4 // p
/
@) , // /
. . /
Given a set of labeled points .. @ / ,
R ®
(X, Yi)i=1..n ® ® @
% ERT y €{+1,—1) o ® /
/
O ¢ ©
We want to predict the label of an @ O
unseen point Support vectors @
Find a hyperplane which ,’ // @ ®
separates our labeled data. Use / / O
this as our decision rule / / ,/
/
/

Hyperplane



Features map

* Linearly separable datasets the task can be solved in the data domain
* Non-linearly separable datasets may become linearly separable by including new
features.

This transformation is called a feature map &
- - Decision rule:

wix+b=0 label(x) = sign(wTx + b)
P (x)
v wlid(x)+b=0 label(x) = sign(w! ®(x) + b)



Solving for the optimal separating hyperplane

* Primal Problem

. Iwl|? T
min Lp = — ) ailyi(w ®(x;) + b) — 1]
a,w,b 2 /
LeT
* Dual form ol _ 4 oL _

ow ob

1
max L (a) = z a; -3 z a;a;y;y; P(x;)" P (x;)

eT L,jJeT

CID(xl)TCD(x]) =

Decision rule: label(s) = sign(z a;y;K(x;,s)+b)

lENg

“kernel trick”

Kij = K(x;,x;)

If K;; is efficiently computable we
can efficiently solve the dual form
of our problem



Kernel function

* We do not need to calculate the actual embedding
 Gram matrix (kernel matrix) define distance or similarity in the
original space

* After embedding you can calculate the inner product in the
embedding space, you just need to calculate the product but do

not need to know the vector
* Application: k-means, SVM,...



Linear Model Definition

* Let X be a data domain

* And ¢: X —» F afeature map

* We call a linear model in F any function f(x) = (¢p(x),w) ¢
* Withw € F

From this definition we immediately see that deterministic quantum
models are linear models



Kernel Methods Quantum models

Feature space Quantum Hilbert Space
F H
Data domain Data domain
X X
. ‘ P . |¢()

¥ '\\\\\!ﬁi\_J‘ g : 16x)
k(x,x') =< (), $()S

Data-encoding Feature space

Data domain
X




Data-encoding feature map

1. Dirac vectors as feature vectors
¢:x = |Pp(x)) ()" (x))

2. Density matrices to represent feature encoding states

$:x = p(x) trip(x), p(x)}

p(x) =|d(x) ¥d(x)| Ifarepure states



Data-encoding feature map definition

* Given a n-qubit quantum system state [y), let F be the space of complex
valued 2"*2" dimensional matrices equipped with the H-S inner product

(p! G)T — tT{pTO'}

* The data encoding feature map is defined as the transformation

o: X > F
¢(x) = |p(x) Xp(x)| = p(x)

* And can be interpreted by a data encoding quantum circuit U(x)



Data-encoding feature map -> Quantum Kernel

* Theorem:
Let ¢: X — F be a data-encoding feature map over X’

The inner product of two feature vectors is a kernel

k(e x") = trlp(x)p()] = KdGNDIP())I?

*prove



Starting point

* A large class of supervised, deterministic guantum models can be
formulated as kernel methods

* Quantum Models are linear models in the feature space of the
data encoding feature map

* (Valid for VQM and FT)
* This allows us to apply the results of kernel methods to QML

* Kernel calculated by a quantum computer -> QKE (Quantum
Kernel Estimator)



Quantum Model definition

Let p(x) be a quantum state that encode classicaldatax € X

M a Hermitian operator representing a qguantum measurement

A quantum model is

f(x) = tr{p(x)M}
the expectation value of the quantum measurement as a function of the data
input

* The space of all quantum models contains functions f: X = R
 For pure state embedding with p(x) = | (x)){p(x)]|

f(x) = {p(x) | M| (x))



Deterministic guantum models are linear
models in data-encoding feature space

Theorem

e Let f(x) = tr{pM} be a deterministic quantum model
* withafeaturemap ¢p:x € X - p(x) € F
* Then f is alinear modelin F

* Note: the measurement M can always be expressed as a linear

combination of data encoding states M’ = Y., yxp(x*) where x* €
X



Quantum measurements are linear
combinations of data-encoding states

Theorem
e Let for(x) = tr{pM} be a quantum model
* There exist a measurement M, , € F of the form

M= Y 1ep5) 2t X
k

Such that f,(x) = [y (x) VxeX



The RKHS of Quantum Kernels

Reproducing Kernel Hilbert Space
Alternative feature space

Derived directly form the Kernel
RKHS

Hilbert space of functions F

Data domain
X

f () — k(x,-) I'I I', ,"III k(z™. 1)

* Universality of QMs as function approximators
 Optimization



RKHS definition

e let X #0

 The RKHS of k over X is the Hilbert space F created by completing the
span of functions f: X - R, f(-) = k(x,)),x € X

 Fortwo functions

FO) =) ak(xi),g() = ) fik(x):) €F
' J

l
* The inner product is defined as

(F.9)r= ) aifyk(x,x)

L]
* With ai,ﬁj eER



Functions in the RKHS of F of the quantum kernel
are Linear models in the data-encoding feature
space F (and vice-versa)

Theorem

Data domain
X

X

RKHS
Hilbert space of functions F

fC) = k(x,)

X’

Data domain
X

X

Space of quantum modegls

Mg )x
(M) f(x) = tr{p(x) M}

Feature space

Linearin

X’

(MB )x



Summary

* QMs are linear models in the data-encoded “feature vectors”

* QMs that minimize typical ML cost functions have measurement
that can be written as Kernel expansions in the data

* The problem of finding the optimal measurement for typical ML
cost functions trained with M data samples can be formulated as
an M-dim optimization problem



Expressivity



Variational guantum circuits

* Which functions can these models learn for a given ansatz?



Ansatz

* Problem inspired ansatz

* Generic, problem agnostic

* Hardware efficient (reducing circuits depth)
* Variational Hamiltonian ansatz



Ansatz quality

Given the wide range of ansatz a question is weather a given
architecture can prepare a target state by optimizing its parameters

* Expressivity

* Expressive circuit can be used to uniformly explore the entire space of
quantum states

* How? Compare the distribution of states obtained from the circuit
* Entangling capacity

* Average entanglement of states produced from randomly sampling the
circuit parameters



Expressivity - Generalization

Low expressibility High expressibility
-+ -
Idle circuit Circuit A Circuit B Arbitrary unitary
a)
0 -{+ 0 -7}

L]

b)

11

Sim et al. on Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms

Havlicek et al. on Supervised learning with quantum-enhanced feature spaces



https://arxiv.org/abs/1905.10876
https://www.nature.com/articles/s41586-019-0980-2

Variational guantum circuits

* Which functions can these models learn for a given ansatz?

Variational Quantum Classifier

Quantum models can be expressed as a sum of trigonometric
functions

fo(X)=<Y(x, 6) | a,lY(x, 6))=cos(B,) cos(x) - sin(8,) sin(B,) sin(x)



Effect of data encoding on the expressive power of variational quantum-machine-learning models

Maria Schuld,! Ryan Sweke.” and Johannes Jakob Meyer®?
' Xanadu, Toronto, Ontario, Canada M5G 2C8
2Dahlem Center for Complex Quantum Systems, Freie Universitiit Berlin, 14195 Berlin, Germany

M (Received 22 September 2020; revised 11 February 2021; accepted 3 March 2021: published 24 March 2021)
FOo= ) cu®)e

wEQCRN

* Expressivity influenced by both frequency spectrum and trainable parameters.
 Data Encoding controls the Expressivity of guantum models



— layer 1 — — layer 2 — — layer L —
o 11 N
= = 3 ? N
L T L ¥ «..L_,- T '__q
=|[S@)| | = ||S@) = ||S@ | |2 UCx,0) = Wsa(0) | [ Sicxomic0:)
|{}I;' ] W . u H — - /{7({ . l=1
0) -L__H HH i I Si(x;) = e™ it
I-,.f;:'__
f '. x) = (0|U(x)TMU(x)|0
- | trainable f( ) ( | ( ) ( )l )
ClI /\_/ 1—|\/\ | circuit block
o I.
I VAV AL . EAVAVE '- _ .
data encoding f(xX)g = Z c,(0)e'w*
l’.f:;[ \/\/\N E NV\/\ circuit block weOoRN

* |fthe encodingis notrich enough, we may end up with very limited model classes that variational
circuits can express, and learn, even if the variational circuit is arbitrarily deep and wide
* Expressivity of the coefficients, controlled by the model



Function class of qguantum model

Theorem
« X = RN input domain, Y = R output domain
* fo: X = Y deterministic quantum model
e Circuit U(x, 8) = Wy41(0) TTiL, S; (x))W;(6;) where S;(x;) = e~ ¥iCi
* (;is a diagonal operator diag( ﬁ,..., /12), d is Hilbert space dimension
Then:

fo)e= ) cu®)e

weQcRN Real valued

*0e)
e we),—we) = c, =cZ,
* K=(| ) |-1)/2 size of the spectrum



Example: single Pauli rotation encoding

* =1

GO = i

e U(x) = WAG) WD — f(x) = Asin(2yx + B) + C
* H has two eigenvalues (1;,4,) = (—=v,7)

*H = %in Pauli basis » y = % 0 =1{-2,02}

|O>m— <0-Z>



Numerical results
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Limits of expressivity

* Quantify the number of frequencies a model has acces to:
e Q={(4, ++2;,) — i, + -+ A,)}
* 2L terms

 d?! total values of frequencies possible
dZL

K<P--1
2



Conclusion

* VQC represented by truncated Fourier series
* Frequencies are determined by data-embedding
* Coefficient determined by unitaries and observable

* Replicating the embedding (parallel or serial) extends frequency
spectrum linearly

* A single layer VQC with a sufficient large Hilbert space is a
universal function approximator



Trainability



Variational guantum circuits

* How can we determine the optimal models that minimize the cost
functions derived from learning problems?



Cost function -> Training

* should not be efficiently computable with a classical computer

* should be “operationally meaningful” (smaller cost values
Indicate a better solution quality)

* must be trainable (it should be possible to efficiently optimize the
parameters)



Training Variational Quantum Models

* Goal: Find the parameters which minimize a data-dependent cost function
C(0)

* Automatic differentiation (chain rule)



Automatic differentiation

* Programming paradigm in which for a programmatic
Implementation of a differentiable function f,, methods to
compute partial derivatives of the form ay f, are automatically
provided.

e Neural network

aC o,
WO = 5 o

Classical Results of quantum computation



Parameter-shift rule

* Family of rules that express the partial derivative of a quantum
expectation with respect to a gate parameter as a linear
combination of the same expectation, but with the parameter
“shifted”



Parameter-shift rule

* The quantum model only depends on a single parameter u which
only affect a single gate G(u)

* Variational circuit of he model fg: VG(u)W
* [y) = W|0)

B =VTMV

* Deterministic quantum model.:

* fo = (W[GTWBGW|Y), ne o

* By linearity of the expectation the partial derivative:

* 0, fo=(¥|GTB (0,9 |v) + (¥|(0,.6)BG|y)




Parameter-shift rule

0,fo=(V|GTB(0,9|v) + (¥|(0,6)1BG|y)

* Each term is not a quantum expectation value
* 0,§ is unitary?
* How to compute the 0, fg using quantum computation?



Parameter shift rule

* Letf, = <M>, be a quantum expectation value that depends on a
classical parameter L.

* A parameter-shift rule is an identity of the form

* /,qu — Zi aif,u+sl-

* where {a; } and {s;} are real scalar values.



Parameter shift rule

_ fu+s)—f(u-s)

) V]f“ - 2sins
* Estimation of analytical gradient (unbiased)
* Finite-difference rule: estimation of approximate gradient (biased)

0>

|0>

5 B

A

0>

0>

5 B

A




Challenges in training VQA for ML

* Inherently stochastic environment due to finite budget for

measurement
e Hardware noise
* Barren plateaus

3
— 1077 A
Q,

1 = (B )*w — (B’

ICN Slope=-1.374
o] e
]

\\
‘\.
“‘\
L)

LY
»
\,
N\

.\
w
LY
®

5 10 15 20 25
n Qubits

 The variance of the gradient of the loss function vanishes
* Gradients become concentrated around zero



Training Quantum models

* Find the optimal measurements of quantum models for typical
machine learning cost functions only have relatively few degrees
of freedom.

* The process of finding these optimal models (i.e., training over the
space of all possible quantum models) can be formulated as a
low-dimensional optimization problem.

* Kernel-based approach



Training

From a learning theory perspective, training can be phrased as
Regularized empirical risk minimization problem



Regularized empirical risk minimization of
guantum models

* Let X, Y be data input and output domains

* p a probability distribution (unknown) on X from which data is
drawn

* L: XxYxR — |0, 00] a loss function that quantifies the quality of
the prediction of a quantum model

* f(x) = tr[p(x)M]

* R, (f) = [ L(x,y, f(x)dp(x,y) expected loss
*RL(f) =B L™, y, f (x™))

* infrrer MM + R (tr{p(x)M}), 2 € R*



The Representer Theorem

e K: XxX —» R, FRKHS

*D={(x"y"), .., (x"y") } € XxY

 g:[0,00) = R strictly monotonic increasing regularization function
* L: XxYxR — [0, 0]

* Any minimizer of the regularized empirical risk

* fopt = argminfegc{gllfllgzc + I?L(f)} fopt(X) =Y a tr{p(x)p(x™)}
m=1
e Admit a representation of the form y
fopt(x) _ . C(mK(x .X') = tr{p(x }mzzlnmpn )}

Optimal measurement: My,;= ) aypp(x™),x™ € X = tr{p(x) Mop}



Kernel-based training versus variational training

Cost(a)

k

kernel-based training

space of quantum

/ Mupt Mupt\

\
models
_,-"‘./[
E | |'ll | ﬁ"v
- Il Wi
7 A )
I\ réi || 'II VA
opt el f
My -.
IIMH - .-'ll ﬂ
‘ll v 0 0 .
— ____,-/ variational tr aIning

Training quantum models can be formulated as a finite-

dimensional convex program



Quantum Machine Learning models

Deterministic

Probabilistic

Implicit

Explicit

Data re-
uploading




Quantum Machine Learning models

10) ~
Explicit |6) Ugp(x) ﬁ V(o) J:%O

JI\

| Feature encoding Variational meas.

fo(x) = (P(x)|VT(@)0V(0)|1h(x))
= Tr[p(x)0p] d(x) = p(x) = [P P x)|

= (P (x), We)y wg = 0 =V'(0)0V(6)
10) -rle(xl) i (Rz(el) }?z(grul)?-[d]
10) HR.x2) TR 4R (] 0
10yt e —4{RC )

Jerbi, Fiderer, Poulsen Nautrup, Kiibler, Briegel & Dunjko, Quantum machine learning beyond kernel methods. Nat. Comm. (2023)



Quantum Machine Learning models

ici '|(:)) U(x)ﬁVG J:‘EO
Explicit 0) b || V() -

| Feature encoding Variational meas.
| lO) U || T (el ‘_E P
Implicit 0) ¢ (X) | | Up(x) | = Fo

Quantum kernel

M

fu® = ) am [p@E™))[

M
”IJ':I k(x; x{m}) Uﬂ'.ﬂ - z HTﬂp{-I{”Ij}
- = - =1
= anTrp@pE™)]
m=1

Jerbi, Fiderer, Poulsen Nautrup, Kiibler, Briegel & Dunjko, Quantum machine learning beyond kernel methods. Nat. Comm. (2023)



Quantum Machine Learning models

|0) HH HA fo(x)
Explicit |6) Ugp(X) V(6) = 0 —
| Feature encodingJ Variatim;al meas. Tr[p(x)0(6)]
lO) U |5 T fanl ‘_a P
mpett 0) o) | | Up() [ Z%0 | Trip(x)0,]
: Quantum kernel A my
Sat |O)—S]:€J:IE ...... JE /7{0
ata re- : 2 =hs = I %
. |0) - e . ........ o ). Tr[p(x, 9)0(9)]
§ pload ng Data re-uploading circuit

Jerbi, Fiderer, Poulsen Nautrup, Kiibler, Briegel & Dunjko, Quantum machine learning beyond kernel methods. Nat. Comm. (2023)



Quantum Machine Learning models

i 4 "\ (7 - N
(ﬂ} "_,,."“H,.-u——”"_—'_"“ - % |O> ~ = E]
/ : b |0> le(e) U, ||v,c0)|| T, @ 0

Linear models

Data

Explicit :I Implicit

;ﬁrﬁ-uplﬂading \. \ J
\ . '
\\ ( + )R DR (0] R )[R (B R, (x3)H ) O
\\\\ )R (xR (61) 0
+ )R (x2) &, 10)(0]
+)Rz(x3) &©— [0X0]

Jerbi, Fiderer, Poulsen Nautrup, Kiibler, Briegel & Dunjko, Quantum machine learning beyond kernel methods. Nat. Comm. (2023)



Quantum Machine Learning models

(b)

Linear models
Linear models

Explicit model
Ofg

mappings

Jerbi, Fiderer, Poulsen Nautrup, Kiibler, Briegel & Dunjko, Quantum machine learning beyond kernel methods. Nat. Comm. (2023)



Performance evaluation

| -3¢ Training implicit —+— Testing implicit
-><¢-- Training explicit —+— Testing explicit
{ =>¢- Training classical —e— Testing classical

Mean squared error
o o o = = =
A oo ® o N b

o
o

o
o

System size (n)



Software

% ®X/\N/\DU |\, Cirg

Qiskit PE

O PyTorch




Quantum Noise




Benefits of Open Quantum Systems for Quantum Machine Learn-
ng
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-

] Quantum machine learning is a discipline that holds the promise of revolutionizing data processing and problem-solving. However,
- ndissipation and noise arising from the coupling with the environment are commonly perceived as major obstacles to its practical ex-
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