
Quantum Artificial 
Intelligence

Menica Dibenedetto 
10 April 2025

Summer School 2025 - STIAS, Stellenbosch, 7-14 April 2025



Administrative info

• Instructor: Menica Dibenedetto (Assistant Professor, Maastricht 
University, NL)

• Communication:
domenica.dibenedetto@maastrichtuniversity.nl

mailto:domenica.dibenedetto@maastrichtuniversity.nl


Administrative info

• 2 appointments (lecture/practical)
• Group projects/paper discussion



Who are you?

Go on
www.wooclap.com
Code:  UHHJST

http://www.wooclap.com/


Sources



Artificial Intelligence (AI)

• AI was founded as a distinct discipline at the Dartmouth workshop 
in 1956. 

• The term itself was invented by the American computer scientist 
John McCarthy and used in the title of the conference.

• AI is a subfield of computer science that models the mechanisms 
of intelligent human behavior. 



Definition of Artificial Intelligence (AI)

“Artificial intelligence (AI) refers to systems 
that display intelligent behaviour by 
analysing their environment and taking 
actions – with some degree of autonomy –
to achieve specific goals. 
AI-based systems can be purely software-
based, acting in the virtual world (e.g. 
voice assistants, image analysis software, 
search engines, speech and face 
recognition systems) or AI can be 
embedded in hardware devices (e.g. 
advanced robots, autonomous cars, 
drones or Internet of Things applications).” 

European Commission's Communication on AI



AI algorithms

• Symbolic AI
• Symbolic representation of the domain in which the 

problems are solved.

• Statistical Machine Learning 
• Distributed representations

• Embodied intelligences 

Computationalism

Connectionism

Information is physical



The Emergence of Quantum Artificial Intelligence

Quantum AI Growth and Industry Support (2019-Present)

• 2019: Google’s quantum supremacy milestone sparked 
industry interest Industry leaders (IBM, Google, Rigetti) 
released quantum ML libraries

• Key focus areas today: Quantum optimization, classification, 
generative models, new learning paradigms….

Early Foundations (1990s-2000s)
• 1996: Grover's Search Algorithm
• 2000s: Theoretical Expansion
• Notable Quantum hardware limitations

Rise of Quantum Machine Learning (2010s)
• 2011: D-Wave Systems introduces quantum annealers
• 2016: IBM releases its first cloud-accessible quantum 

processors
• 2017 onward: QML algorithms developed  (Quantum-enhanced 

support vector machines and clustering)



Questions in search of an answer

• Could the physical nature, as described by quantum physics, also 
lead to algorithms that imitate human behavior? 

• What are the possibilities for the realization of artificial 
intelligence by means of quantum computation?

• We can add more….



AI for Quantum Computing 

Quantum Computing for AI

*Quantum Machine Learning



Quantum Machine Learning 

Motivations: 

• Quantum Computing can perform linear algebra exponentially faster then 
classical computers

• Quantum system can generate patterns in data that classical system can’t

• QML may be able to identify and classify patterns that are classically 
intractable

(Blu sky initiative, Michigan Engineering)



Machine Learning

• Supervised Learning P(Y|X)
• Discriminative models, Classification, Regression,..
• SVM, NN …

• Unsupervised Learning P(X = x),
• Discriminative and Generative Models, Clustering, Feutures extraction, 

Dimensionality Reduction,..
• Boltzmann Machines, ...

• Reinforcement Learning (Interaction)
• Agent–Environment paradigm



Quantum computing Machine Learning
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Quantum Machine Learning

Image credit: Maria Schuld and Francesco Petruccione. Supervised learning with quantum computers. Vol. 17. Springer, 2018.

Computer science
Quantum mechanics 
Information science 
…

Computer science
Statistics
Mathematics
…



Quantum Machine Learning

Machine learning & artificial intelligence in the quantum domain: a review of recent progress To 
cite this article: Vedran Dunjko and Hans J Briegel 2018 Rep. Prog. Phys. 81 074001 



What to address?

Quantum Models

Gradients and software integrations

Trainability

Expressability

Generalization

Quantum advantage

Architectures



Lectures Overview

• A  bit of definitions
• Basic structure of a QML model
• Data Encoding
• Kernel-based methods and beyond
• Training and Expressability
• Open Quantum System for ML

Practical



A bit of formalism…
States and Observables 

State |0>

State |1>

Computational basis



Classical stochastic -> Quantum
•

Quantum

Matrix

Vector

Quantum

Expected value



Unitary evolutions

Today observation

Tomorrow probability 60% stay the same 40% change

1

0



Density matrix

State MixedPure



Measurement
Computational basis measurement 

P0=|0><0| P1=|1><1|



Quantum Models for AI

Fault-tolerant

Hybrid

Full quantum

Near-term



Quantum ML System
With classical data

Dataset/Input

Output

ML

Dataset/Input

Output

Encoding

Readout

Processing

Measurement 

State preparation

Unitary Evolution

x yf(x;ϑ)



NISQ Quantum Machine Learning

Variational Quantum Algorithm 

Cerezo, M., Arrasmith, A., Babbush, R. et al. Variational quantum algorithms. Nat Rev Phys 3, 625–644 (2021). 
https://doi.org/10.1038/s42254-021-00348-9

= Variational Circuits = Parametrized Circuits

- Ansatz
- Cost function
- Gradients



Quantum Machine Learning models

ProbabilisticDeterministic

Implicit Explicit Data re-
uploading



Quantum Machine Learning models

ProbabilisticDeterministic



Variational Quantum Circuits

• Deterministic quantum models
• Example: Variational Quantum Classifier

• Probabilistic quantum models
• Example: Variational Generator

U(x, ϑ) <y>x,ϑ|x>

U(x,ϑ) Pϑ(y|x)|x> Pϑ(x)



Deterministic quantum models
𝒳𝒳 input domain, 𝑥𝑥ϵ𝒳𝒳,𝜃𝜃ϵℝ𝑘𝑘

𝑈𝑈 𝑥𝑥,𝜃𝜃 unitary 𝑈𝑈 𝑥𝑥, 𝜃𝜃 = W 𝜃𝜃 S(x)

ℳ Hermittian operator (observable)

Measurement in diagonal basis
ℳ = �

𝑖𝑖

𝜇𝜇𝑖𝑖| ⟩𝜇𝜇𝑖𝑖 �𝜇𝜇𝑖𝑖|

| ⟩𝜓𝜓 𝑥𝑥, 𝜃𝜃 = 𝑈𝑈 𝑥𝑥,𝜃𝜃 | ⟩0

𝑓𝑓(𝑥𝑥)𝜃𝜃 = 𝜓𝜓 𝑥𝑥, 𝜃𝜃 ℳ 𝜓𝜓 𝑥𝑥,𝜃𝜃 = 𝑡𝑡𝑡𝑡{ℳ𝜌𝜌(𝑥𝑥,𝜃𝜃)}
𝜌𝜌 𝑥𝑥,𝜃𝜃 = 𝑈𝑈 𝑥𝑥,𝜃𝜃 † ⟩|0 ⟨0|𝑈𝑈 𝑥𝑥, 𝜃𝜃

𝑓𝑓(𝑥𝑥)𝜃𝜃 = �
𝑖𝑖

𝜇𝜇𝑖𝑖 𝜇𝜇𝑖𝑖 𝜓𝜓 𝑥𝑥, 𝜃𝜃 2 = �
𝑖𝑖

𝜇𝜇𝑖𝑖𝑝𝑝(𝜇𝜇𝑖𝑖)

�𝑓𝑓 𝑥𝑥 =
1
𝑆𝑆�𝜇𝜇(𝑠𝑠)

𝑊𝑊 𝜃𝜃 = 𝑉𝑉𝐾𝐾+1�
𝑘𝑘=1

𝐾𝐾

𝑊𝑊𝑘𝑘(𝜃𝜃)𝑉𝑉𝑘𝑘

𝑆𝑆 𝑥𝑥 = 𝑇𝑇𝑁𝑁+1�
𝑖𝑖=1

𝑁𝑁

𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖)𝑇𝑇𝑖𝑖

𝒢𝒢 𝛼𝛼 = 𝑒𝑒−𝑖𝑖𝛼𝛼𝐺𝐺



Example: Deterministic quantum models
Variational Quantum Classifier

Rx(x)|0> R(ϑ1, ϑ2, ϑ3)
<σz >

|ψ(x, θ)⟩ = R(θ1 ,θ2 ,θ3) |φ(x)⟩ 

f θ (x) = ⟨ψ(x, θ) ∣ σz ∣ψ(x, θ) ⟩ = cos(θ2) cos(x) - sin(θ1) sin(θ2) sin(x) 

|φ(x)⟩ = RX(x)|0⟩ 

RX(x) =
cos 𝑥𝑥

2
−𝑖𝑖 sin 𝑥𝑥

2

−𝑖𝑖 sin 𝑥𝑥
2

cos 𝑥𝑥
2

• Binary classifier
• Probabilistic classifier



Probabilistic quantum models

𝑝𝑝 𝑦𝑦 𝑥𝑥 = 𝑦𝑦 𝜓𝜓(𝑥𝑥,𝜃𝜃) 2 𝑝𝑝(𝑥𝑥) = 𝑥𝑥 𝜓𝜓(𝜃𝜃) 2

𝑀𝑀 = �
𝑦𝑦𝜖𝜖𝜖𝜖

𝑦𝑦| ⟩𝑦𝑦 ⟨𝑦𝑦| 𝑀𝑀 = �
𝑥𝑥𝜖𝜖𝒳𝒳

𝑥𝑥| ⟩𝑥𝑥 ⟨𝑥𝑥|

| ⟩𝜓𝜓 𝑥𝑥, 𝜃𝜃 = 𝑈𝑈 𝑥𝑥,𝜃𝜃 | ⟩0

UnsupervisedSupervised 

𝒳𝒳 𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝜖𝜖 𝑑𝑑𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

𝑓𝑓(𝑥𝑥)𝜃𝜃 = 𝑥𝑥 | ⟩𝜓𝜓 𝜃𝜃 ⟨𝜓𝜓 𝜃𝜃 | 𝑥𝑥

ℳ

Generative models

Born Machines



Example: Probabilistic quantum models
Variational Generator 
• Inspired by Boltzmann Machines
• Unsupervised

4 qubits: visible layer
3 qubits: hidden (unmeasured) layer

Injective mapping

| ⟩0000000 | ⟩𝜓𝜓 𝜃𝜃 = 𝑊𝑊 𝜃𝜃 |000000 ⟩0

𝑀𝑀𝑑𝑑𝑑𝑑𝑒𝑒𝑀𝑀: 𝑝𝑝 𝑥𝑥 = 𝑥𝑥 𝜓𝜓 𝜃𝜃 2, 𝑥𝑥 0,1 ⨂4

| ⟩0011

Basis state of 7 qubits Images of 4 qubits

𝑊𝑊 𝜃𝜃

| ⟩𝜓𝜓 𝜃𝜃 =
1
2 |101 ⟩0 + |01 ⟩01 + |110 ⟩0 + |001 ⟩1

Bar-or-strips 



Quantum Machine Learning in NISQ

Dataset/Input

Output

Encoding

Readout

Processing

Measurement 

State preparation

Unitary Evolution



Data Encoding

• State preparation vs Data encoding
• Bottleneck for the runtime of the algorithm

• In QC an efficient algorithm runs in polynomial time in the number of 
qubits

• In ML an efficient algorithm runs in polynomial time in the dimension of 
the data inputs N and the number of data points M. 

• Amplitude-efficient/qubits-efficient
• Data encoding -> Feature map -> Kernel methods



Data Encoding

• N qubits system in the ground state
• Data accessible form a classical memory
• Classical pre-processing? Sometimes it is needed
• Dataset of N-dim real-valued feature vectors
• Labels? Encoded in qubits entangled with inputs data



Data Encoding

• Basis Encoding
• Amplitude Encoding
• Angle (or phase or rotation) Encoding
• Hamiltonian Encoding 



Advanced data encoding for Image Representation

• NEQR: Novel Enhanced Quantum Representation 
• QPIE: Quantum Probability Image Encoding 
• FRQI: Flexible Representation for Quantum Images
• OQIM: Order-Encoded Quantum Image Model 



Basis Encoding
• Convert integer to binary representation 
𝑥𝑥 → 𝑏𝑏𝑠𝑠𝑏𝑏𝜏𝜏𝑙𝑙−1 … 𝑏𝑏1𝑏𝑏0 � 𝑏𝑏−1𝑏𝑏−2 … 𝑏𝑏−𝜏𝜏𝑟𝑟, where 𝜏𝜏 = 1 + 𝜏𝜏𝑙𝑙 + 𝜏𝜏𝑟𝑟
• Convert binary in quantum state
• The amplitude just mark the result of computation
• Qubit-efficient (n gates at most)

Advantages: Ease of preparation

Disadvantages: Qubit count



Basis Encoding

• Simple Algorithm: flip the qubits representing non-zero bits

𝑈𝑈 𝑏𝑏 = �
𝑖𝑖=0

𝜏𝜏𝑁𝑁

𝑋𝑋𝑏𝑏𝑖𝑖



Basis Encoding

• How to encode a Dataset 𝒟𝒟?

| ⟩𝒟𝒟 =
1
𝑀𝑀
�
𝑚𝑚=1

𝑀𝑀

| ⟩𝑥𝑥𝑚𝑚

𝑥𝑥𝑚𝑚𝜖𝜖 𝒟𝒟 ∶ 𝑏𝑏𝑚𝑚 = 𝑏𝑏1𝑚𝑚, … , 𝑏𝑏𝑛𝑛𝑚𝑚 , 𝑏𝑏𝑖𝑖𝑚𝑚𝜖𝜖{0,1} for i=1,…n

Sparse!



Amplitude encoding

• Use the amplitude of a quantum state to represent classical data
• Step 1: normalize it to unit length
• Step 2: pad it to zeros if required

Advantages: fewer qubits n=logN, n=logNM, N input features, M instances

Disadvantages: preparation, readout



Amplitude encoding

• Vector

• Dataset

⟩|𝜓𝜓 = �
𝑖𝑖

𝛼𝛼𝑖𝑖| ⟩𝑖𝑖

⟩|𝜓𝜓𝒟𝒟 =
1
𝑀𝑀
�
𝑚𝑚=0

𝑀𝑀−1

| ⟩𝜓𝜓𝑋𝑋𝑚𝑚 | ⟩𝑑𝑑

How to prepare this arbitrary state?

⟩|𝜓𝜓𝑋𝑋 = �
𝑖𝑖=0

𝑁𝑁−1

𝑥𝑥𝑖𝑖| ⟩𝑖𝑖

Amplitude vector of dimension NM

𝛼𝛼 = (𝑥𝑥11, … 𝑥𝑥𝑁𝑁1 , … , 𝑥𝑥1𝑀𝑀, … , 𝑥𝑥𝑁𝑁𝑀𝑀)𝑇𝑇



Amplitude-Efficient state preparation

• Top-down Binary tree (Möttönen)

Level 1

Level 2

Level 3

Cascade of multi-controlled Rotations

| ⟩𝑞𝑞2

| ⟩𝑞𝑞2𝑞𝑞1

| ⟩𝑞𝑞2𝑞𝑞1𝑞𝑞0

Requires an exponential number of operations regarding the number of qubits



Angle encoding

• Angle more suitable for representing continues values
• Manipulate the phase relationship between qubits using rotation 

gates not directly changing their amplitudes

Advantages: linear time in the number of features and qubits

Disadvantages: expensive to encode a dataset at once



• Scalars can be associated with the time t when implementing a 
unitary transformation 𝑈𝑈 𝑡𝑡 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖defined by an Hamiltonian H.

• A subclass of this strategy uses Pauli rotation gates
• Rotation can be Controlled on qubits

𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁)

𝑈𝑈 𝑥𝑥 = 𝑅𝑅𝑥𝑥 𝑥𝑥1 ⨂…⨂𝑅𝑅𝑥𝑥 𝑥𝑥𝑁𝑁

Angle encoding



Ising based:  map the problem to the Ising model

Hamiltonian encoding

Advantages: easy to implement

Disadvantages: limited scope

First approach

𝐻𝐻 = −�
𝑖𝑖,𝑗𝑗

𝛼𝛼𝑖𝑖𝑗𝑗𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 −�
𝑖𝑖

ℎ𝑖𝑖𝜎𝜎𝑖𝑖



Hamiltonian encoding

• Ginen X: Dataset dim MxN, rows: feature vectors
• Associate the Hamiltonian H with a matrix X

• Pre-processing tricks that embed the data matrix into Hermitian matrix

• Hamiltonian encoding allows us to extract eigenvalues of matrices, or to multiply them to an 
amplitude vector. 

| ⟩𝜓𝜓′ = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖| ⟩𝜓𝜓

Advantages: natural to encode

Disadvantages: hardware constraints and conditions

Second approach

𝐻𝐻𝑋𝑋 = 0 𝑋𝑋
𝑋𝑋† 0



Why data encoding is important

• Interpreting data encoding as feature map
• Feature map change the structure of the data in a non-trivial manner
• Except for amplitude encoding, all the strategies perform non-linear 

operations in the data



Encoding from a conceptual picture 

• Map from input space to state space of the quantum system
• If an inner product is defined on the state space: feature map

Inner product = distance -> learning

• Feature map play a role in Kernel-based ML models



Kernel-based 
Quantum Models



Kernel Theory Quantum models

Feature maps

x yf(x;ϑ)

x yf(ϕ(x);ϑ)ϕ(x)



Kernel Methods in ML

• Solve ML tasks based on the idea of a Similarity Measure (Kernel)



Kernel Methods in ML

• Solve ML tasks based on the idea of a Similarity Measure (Kernel)
• Similarity measure



Kernel Definition

Let 𝒳𝒳 be a non-empty set (input domain). A function

Is called Kernel if the Gram matrix K with entries

Is positive semi-definite 

𝜅𝜅:𝒳𝒳𝑥𝑥𝒳𝒳 → ℝ

𝐾𝐾𝑚𝑚,𝑚𝑚
′ = 𝜅𝜅(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑚𝑚′)

�
𝑚𝑚,𝑚𝑚′=1

𝑀𝑀

𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚′∗ 𝜅𝜅(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑚𝑚′) ≥ 0

For any set of inputs 𝒟𝒟 = 𝑥𝑥1, … , 𝑥𝑥𝑀𝑀 ⊆ 𝒳𝒳and complex numbers c1,…,cM we have that:



Feature map Definition

• Let 𝒳𝒳 be a non-empty set (input domain)
• ℋ ⊆ ℝn is the feature space
• Feature map 𝜙𝜙:𝒳𝒳 → ℋ ⊆ ℝn

• 𝑥𝑥 → 𝜙𝜙(𝑥𝑥) non-linear: 𝜙𝜙 𝜆𝜆𝑥𝑥 + 𝜇𝜇𝑦𝑦 ≠ 𝜆𝜆𝜙𝜙 𝑥𝑥 + 𝜇𝜇𝜙𝜙 𝑦𝑦



Kernel  Feature map

• Kernel function can always be written as the inner product of data 
mapped in a suitable feature space by a feature map 

𝑘𝑘 𝑥𝑥,𝑦𝑦 𝜙𝜙,ℋ
𝑘𝑘 𝑥𝑥,𝑦𝑦 = 𝜙𝜙 𝑥𝑥 ,𝜙𝜙 𝑦𝑦 ℋ

• Expressing a model in terms of kernel function allows us to use 
the kernel trick to turn one model into another by replacing kernel



Linear model

• Let’s consider a supervised learning tasks
• Given a dataset of labeled sample (labeled by an unknown 

function)
• Label discrete: classification
• Label continuous: regression



Linear Classifiers  

Given a set of labeled points 

We want to predict the label of an 
unseen point 

Find a hyperplane which 
separates our labeled data. Use 
this as our decision rule

(�⃗�𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑖𝑖=1…𝑁𝑁

�⃗�𝑥𝑖𝑖 ∈ ℝ𝑛𝑛 𝑦𝑦𝑖𝑖 ∈ {+1,−1}



Linear Classifiers  

Support vectors

Hyperplane

Max Margin

Given a set of labeled points 

We want to predict the label of an 
unseen point 

Find a hyperplane which 
separates our labeled data. Use 
this as our decision rule

(�⃗�𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑖𝑖=1…𝑁𝑁

�⃗�𝑥𝑖𝑖 ∈ ℝ𝑛𝑛 𝑦𝑦𝑖𝑖 ∈ {+1,−1}



Features map
• Linearly separable datasets the task can be solved in the data domain
• Non-linearly separable datasets may become linearly separable by including new 

features.  
This transformation is called a feature map Φ

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑤𝑤𝑇𝑇Φ(𝑥𝑥) + 𝑏𝑏 = 0

𝑀𝑀𝑑𝑑𝑏𝑏𝑒𝑒𝑀𝑀 𝑥𝑥 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

𝑀𝑀𝑑𝑑𝑏𝑏𝑒𝑒𝑀𝑀 𝑥𝑥 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖(𝑤𝑤𝑇𝑇Φ(𝑥𝑥) + 𝑏𝑏)

Decision rule:

Φ(𝑥𝑥)



Solving for the optimal separating hyperplane
• Primal Problem

• Dual form

min
𝑎𝑎,𝑤𝑤,𝑏𝑏

𝐿𝐿𝑃𝑃 =
𝑤𝑤 2

2
−�

𝑖𝑖𝜖𝜖𝑇𝑇

𝑑𝑑𝑖𝑖 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇Φ(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 1

max
𝑎𝑎

𝐿𝐿𝐷𝐷 𝑑𝑑 = �
𝑖𝑖𝜖𝜖𝑇𝑇

𝑑𝑑𝑖𝑖 −
1
2 �
𝑖𝑖,𝑗𝑗𝜖𝜖𝑇𝑇

𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 Φ(𝑥𝑥𝑖𝑖)𝑇𝑇Φ(𝑥𝑥𝑗𝑗)

𝜕𝜕𝐿𝐿𝑃𝑃
𝜕𝜕𝑤𝑤 = 0

𝜕𝜕𝐿𝐿𝑃𝑃
𝜕𝜕𝑏𝑏 = 0

“kernel trick”

Φ 𝑥𝑥𝑖𝑖 𝑇𝑇Φ 𝑥𝑥𝑗𝑗 = 𝐾𝐾𝑖𝑖𝑗𝑗 = 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

𝑀𝑀𝑑𝑑𝑏𝑏𝑒𝑒𝑀𝑀 𝑠𝑠 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖(�
𝑖𝑖𝜖𝜖𝑁𝑁𝑠𝑠

𝑑𝑑𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑠𝑠 + 𝑏𝑏)Decision rule:

If 𝐾𝐾𝑖𝑖𝑗𝑗 is efficiently computable we 
can efficiently solve the dual form 
of our problem



Kernel function

• We do not need to calculate the actual embedding
• Gram matrix (kernel matrix) define distance or similarity in the 

original space
• After embedding you can calculate the inner product in the 

embedding space, you just need to calculate the product but do 
not need to know the vector

• Application: k-means, SVM,…



Linear Model Definition

• Let 𝒳𝒳 be a data domain
• And 𝜙𝜙:𝒳𝒳 → ℱ a feature map
• We call a linear model in ℱ any function 𝑓𝑓 𝑥𝑥 = ⟨𝜙𝜙(𝑥𝑥),𝑤𝑤⟩ ℱ
• With 𝑤𝑤 ∈ ℱ

From this definition we immediately see that deterministic quantum 
models are linear models



Kernel Methods Quantum models

Data domain
𝒳𝒳

x
x’

ϕ(x)
ϕ(x’)

𝑘𝑘 𝑥𝑥, 𝑥𝑥′ =< ϕ 𝑥𝑥 ,ϕ 𝑥𝑥′ >

Feature space
ℱ

Data domain
𝒳𝒳

x
x’

ρ(𝑥𝑥)

ℳ𝜃𝜃 𝑥𝑥

Data domain
𝒳𝒳

x
x’

| ⟩ϕ(x)

Quantum Hilbert Space
ℋ

| ⟩ϕ(x′)

ρ(𝑥𝑥′)

Data-encoding Feature space
ℱ



Data-encoding feature map

1. Dirac vectors as feature vectors

2.    Density matrices to represent feature encoding states

𝜙𝜙: 𝑥𝑥 → | ⟩𝜙𝜙(𝑥𝑥) 𝜙𝜙(𝑥𝑥) 𝜙𝜙′(𝑥𝑥)

𝜙𝜙: 𝑥𝑥 → 𝜌𝜌(𝑥𝑥) 𝑡𝑡𝑡𝑡{𝜌𝜌 𝑥𝑥 , 𝜌𝜌 𝑥𝑥 }

𝜌𝜌 𝑥𝑥 = | ⟩𝜙𝜙(𝑥𝑥) ⟨𝜙𝜙(𝑥𝑥)| If are pure states



Data-encoding feature map definition

• Given a n-qubit quantum system state ⟩|𝜓𝜓 , let ℱ be the space of complex 
valued 2n*2n dimensional matrices equipped with the H-S inner product

𝜌𝜌,𝜎𝜎 ℱ = 𝑡𝑡𝑡𝑡 𝜌𝜌†𝜎𝜎

• The data encoding feature map is defined as the transformation

𝜙𝜙:𝒳𝒳 → ℱ
𝜙𝜙 𝑥𝑥 = ⟩𝜙𝜙 𝑥𝑥 ⟨𝜙𝜙 𝑥𝑥 = 𝜌𝜌 𝑥𝑥

• And can be interpreted by a data encoding quantum circuit U(x)



Data-encoding feature map -> Quantum Kernel

• Theorem:
Let 𝜙𝜙:𝒳𝒳 → ℱ be a data-encoding feature map over 𝒳𝒳
The inner product of two feature vectors is a kernel

𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = 𝑡𝑡𝑡𝑡 𝜌𝜌 𝑥𝑥′ 𝜌𝜌 𝑥𝑥 = 𝜙𝜙 𝑥𝑥′ 𝜙𝜙 𝑥𝑥 2

*prove



Starting point

• A large class of supervised, deterministic quantum models can be 
formulated as kernel methods

• Quantum Models are linear models in the feature space of the 
data encoding feature map

• (Valid for VQM and FT)
• This allows us to apply the results of kernel methods to QML
• Kernel calculated by a quantum computer -> QKE (Quantum 

Kernel Estimator)



Quantum Model definition

• Let 𝜌𝜌(𝑥𝑥) be a quantum state that encode classical data 𝑥𝑥 ∈ 𝒳𝒳
• ℳ a Hermitian operator representing a quantum measurement
• A quantum model is 

𝑓𝑓 𝑥𝑥 = 𝑡𝑡𝑡𝑡{𝜌𝜌(𝑥𝑥)ℳ}
• the expectation value of the quantum measurement as a function of the data 

input
• The space of all quantum models contains functions 𝑓𝑓:𝒳𝒳 → ℝ
• For pure state embedding with 𝜌𝜌 𝑥𝑥 = | ⟩𝜙𝜙(𝑥𝑥) ⟨𝜙𝜙 𝑥𝑥 |

𝑓𝑓 𝑥𝑥 = 𝜙𝜙(𝑥𝑥) ℳ 𝜙𝜙(𝑥𝑥)



Deterministic quantum models are linear 
models in data-encoding feature space
Theorem 
• Let 𝑓𝑓 𝑥𝑥 = 𝑡𝑡𝑡𝑡{𝜌𝜌ℳ} be a deterministic quantum model 
• with a feature map 𝜙𝜙: 𝑥𝑥 ∈ 𝒳𝒳 → 𝜌𝜌(𝑥𝑥) ∈ ℱ
• Then 𝑓𝑓 is a linear model in ℱ

• Note: the measurement ℳ can always be expressed as a linear 
combination of data encoding states ℳ = ∑𝑘𝑘 𝛾𝛾𝑘𝑘𝜌𝜌(𝑥𝑥𝑘𝑘) where 𝑥𝑥𝑘𝑘 ∈
𝒳𝒳



Quantum measurements are linear 
combinations of data-encoding states
Theorem 
• Let 𝑓𝑓ℳ(𝑥𝑥) = 𝑡𝑡𝑡𝑡{𝜌𝜌ℳ} be a quantum model
• There exist a measurement ℳexp ∈ ℱ of the form

ℳ𝑒𝑒𝑥𝑥𝑒𝑒=�
𝑘𝑘

𝛾𝛾𝑘𝑘𝜌𝜌(𝑥𝑥𝑘𝑘) , 𝑥𝑥𝑘𝑘 ∈ 𝒳𝒳

Such that 𝑓𝑓ℳ 𝑥𝑥 = 𝑓𝑓ℳ𝑒𝑒𝑥𝑥𝑒𝑒 𝑥𝑥 ∀𝑥𝑥 ∈ 𝒳𝒳



The RKHS of Quantum Kernels
Reproducing Kernel Hilbert Space
Alternative feature space
Derived directly form the Kernel

• Universality of QMs as function approximators
• Optimization 

Data domain
𝒳𝒳

x
x’

𝑓𝑓 � = 𝑘𝑘(𝑥𝑥,�)

RKHS
Hilbert space of functions F



RKHS definition

• Let 𝒳𝒳 ≠ 0
• The RKHS of 𝑘𝑘 over 𝒳𝒳 is the Hilbert space F created by completing the 

span of functions 𝑓𝑓:𝒳𝒳 → ℝ , 𝑓𝑓 � = 𝑘𝑘(𝑥𝑥,�), 𝑥𝑥 ∈ 𝒳𝒳
• For two functions 

𝑓𝑓 � = �
𝑖𝑖

𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖 ,�) ,𝑠𝑠 � = �
𝑗𝑗

𝛽𝛽𝑗𝑗𝑘𝑘(𝑥𝑥𝑗𝑗 ,�) ∈ F

• The inner product is defined as

𝑓𝑓,𝑠𝑠 𝐹𝐹=�
𝑖𝑖𝑗𝑗

𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

• With 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑗𝑗 ∈ ℝ



Functions in the RKHS of F of the quantum kernel 
are Linear models in the data-encoding feature 
space ℱ (and vice-versa)
Theorem

Data domain
𝒳𝒳

x
x’

𝑓𝑓 � = 𝑘𝑘(𝑥𝑥,�)

ℳ𝜃𝜃 𝑥𝑥

RKHS
Hilbert space of functions F

Data domain
𝒳𝒳

x
x’

ρ(𝑥𝑥)

ℳ𝜃𝜃 𝑥𝑥

ρ(𝑥𝑥′)

Feature space
ℱ

Space of quantum models

Linear in

𝑓𝑓 𝑥𝑥 = 𝑡𝑡𝑡𝑡{𝜌𝜌(𝑥𝑥)ℳ}



Summary 

• QMs are linear models in the data-encoded “feature vectors” 
• QMs that minimize typical ML cost functions have measurement 

that can be written as Kernel expansions in the data
• The problem of finding the optimal measurement for typical ML 

cost functions trained with M data samples can be formulated as 
an M-dim optimization problem 



Expressivity



Variational quantum circuits

• Which functions can these models learn for a given ansatz?



Ansatz

• Problem inspired ansatz
• Generic, problem agnostic
• Hardware efficient (reducing circuits depth)
• Variational Hamiltonian ansatz



Ansatz quality

Given the wide range of ansatz a question is weather a given 
architecture can prepare a target state by optimizing its parameters
• Expressivity 

• Expressive circuit can be used to uniformly explore the entire space of 
quantum states

• How? Compare the distribution of states obtained from the circuit

• Entangling capacity
• Average entanglement of states produced from randomly sampling the 

circuit parameters



Expressivity - Generalization

Sim et al. on Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms
Havlíček et al. on Supervised learning with quantum-enhanced feature spaces

https://arxiv.org/abs/1905.10876
https://www.nature.com/articles/s41586-019-0980-2


Variational quantum circuits

• Which functions can these models learn for a given ansatz?

Variational Quantum Classifier
Quantum models can be expressed as a sum of trigonometric 
functions

f θ (x) = ⟨ψ(x, θ) ∣ σz ∣ψ(x, θ) ⟩ = cos(θ2) cos(x) - sin(θ1) sin(θ2) sin(x) 



• Expressivity influenced by both frequency spectrum and trainable parameters.
• Data Encoding controls the Expressivity of quantum models

𝑓𝑓(𝑥𝑥)𝜃𝜃 = �
𝜔𝜔∈Ω⊂ℝ𝑁𝑁

𝑐𝑐𝜔𝜔(𝜃𝜃)𝑒𝑒𝑖𝑖𝜔𝜔𝑥𝑥



𝑈𝑈 𝑥𝑥,𝜃𝜃 = 𝑊𝑊𝑁𝑁+1(𝜃𝜃)�
𝑖𝑖=1

𝑁𝑁

𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖)𝑊𝑊𝑖𝑖(𝜃𝜃𝑖𝑖)

𝑆𝑆𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝑒𝑒−𝑖𝑖𝑥𝑥𝑖𝑖𝐺𝐺𝑖𝑖

𝑓𝑓 𝑥𝑥 = 0 𝑈𝑈 𝑥𝑥 †ℳ𝑈𝑈(𝑥𝑥) 0

• If the encoding is not rich enough, we may end up with very limited model classes that variational 
circuits can express, and learn, even if the variational circuit is arbitrarily deep and wide

• Expressivity of the coefficients, controlled by the model

𝑓𝑓(𝑥𝑥)𝜃𝜃 = �
𝜔𝜔∈Ω⊂ℝ𝑁𝑁

𝑐𝑐𝜔𝜔(𝜃𝜃)𝑒𝑒𝑖𝑖𝜔𝜔𝑥𝑥



Function class of quantum model
Theorem
• 𝒳𝒳 = ℝ𝑁𝑁 𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝜖𝜖 = ℝ 𝑑𝑑𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
• 𝑓𝑓𝜃𝜃:𝒳𝒳 →𝜖𝜖 deterministic quantum model
• Circuit 𝑈𝑈 𝑥𝑥,𝜃𝜃 = 𝑊𝑊𝑁𝑁+1(𝜃𝜃)∏𝑖𝑖=1

𝑁𝑁 𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖)𝑊𝑊𝑖𝑖(𝜃𝜃𝑖𝑖) where 𝑆𝑆𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝑒𝑒−𝑖𝑖𝑥𝑥𝑖𝑖𝐺𝐺𝑖𝑖
• 𝐺𝐺i is a diagonal operator diag(𝜆𝜆1𝑖𝑖 ,…, 𝜆𝜆𝑑𝑑𝑖𝑖 ), d is Hilbert space dimension
Then: 

𝑓𝑓(𝑥𝑥)𝜃𝜃 = �
𝜔𝜔∈Ω⊂ℝ𝑁𝑁

𝑐𝑐𝜔𝜔(𝜃𝜃)𝑒𝑒𝑖𝑖𝜔𝜔𝑥𝑥

• 0 ϵ Ω
• 𝜔𝜔ϵ Ω,−𝜔𝜔ϵ Ω → 𝑐𝑐𝜔𝜔 = 𝑐𝑐−𝜔𝜔∗

• K=(|Ω |-1)/2 size of the spectrum

Real valued



Example:  single Pauli rotation encoding 

• L=1
• 𝒢𝒢 𝑥𝑥 = 𝑒𝑒−𝑖𝑖𝑥𝑥𝑖𝑖

• 𝑈𝑈 𝑥𝑥 = 𝑊𝑊(2)𝒢𝒢 𝑥𝑥 𝑊𝑊(1)

• 𝐻𝐻 has two eigenvalues 𝜆𝜆1, 𝜆𝜆2 → (−𝛾𝛾, 𝛾𝛾)

• 𝐻𝐻 = 𝜎𝜎
2

in Pauli basis → 𝛾𝛾 = 1
2

𝑊𝑊(1)|0> 𝒢𝒢 𝑥𝑥 <σz >𝑊𝑊(2)

→ 𝑓𝑓 𝑥𝑥 = 𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖 2𝛾𝛾𝑥𝑥 + 𝐵𝐵 + 𝐶𝐶

Ω = {−2,0,2}



Numerical results

𝑊𝑊(1)|0> 𝒢𝒢 𝑥𝑥 𝑊𝑊(2) 𝑊𝑊(1)

|0> 𝒢𝒢 𝑥𝑥

𝑊𝑊(2)|0>

|0>

𝒢𝒢 𝑥𝑥

𝒢𝒢 𝑥𝑥

Ω = {−𝑡𝑡, 1 − 𝑡𝑡, … , 0, … 𝑡𝑡 − 1, 𝑡𝑡}



Limits of expressivity

• Quantify the number of frequencies a model has acces to:
• Ω = { 𝜆𝜆𝑗𝑗1 + ⋯+ 𝜆𝜆𝑗𝑗𝐿𝐿 − (𝜆𝜆𝑘𝑘1 + ⋯+ 𝜆𝜆𝑘𝑘𝐿𝐿)}
• 2L terms
• 𝑑𝑑2𝐿𝐿 total values of frequencies possible

• 𝐾𝐾 ≤ 𝑑𝑑2𝐿𝐿

2
− 1



Conclusion

• VQC represented by truncated Fourier series
• Frequencies are determined by data-embedding
• Coefficient determined by unitaries and observable
• Replicating the embedding (parallel or serial) extends frequency 

spectrum linearly
• A single layer VQC with a sufficient large Hilbert space is a 

universal function approximator



Trainability 



Variational quantum circuits
• How can we determine the optimal models that minimize the cost 

functions derived from learning problems?



Cost function -> Training

• should not be efficiently computable with a classical computer
• should be “operationally meaningful” (smaller cost values 

indicate a better solution quality)
• must be trainable (it should be possible to efficiently optimize the 

parameters)



Training Variational Quantum Models

• Goal: Find the parameters which minimize a data-dependent cost function 
C(θ)

• Automatic differentiation (chain rule)



Automatic differentiation

• Programming paradigm in which for a programmatic 
implementation of a differentiable function fθ, methods to 
compute partial derivatives of the form ∂μ fθ are automatically 
provided.

• Neural network

𝜕𝜕𝜇𝜇𝐶𝐶(𝜃𝜃) =
𝜕𝜕𝐶𝐶
𝜕𝜕𝑓𝑓𝜃𝜃

𝜕𝜕𝑓𝑓𝜃𝜃
𝜕𝜕𝜇𝜇

Classical Results of quantum computation



Parameter-shift rule

• Family of rules that express the partial derivative of a quantum 
expectation with respect to a gate parameter as a linear 
combination of the same expectation, but with the parameter 
“shifted”



Parameter-shift rule

• The quantum model only depends on a single parameter 𝜇𝜇 which 
only affect a single gate 𝒢𝒢(𝜇𝜇)

• Variational circuit of he model 𝑓𝑓𝜃𝜃: V𝒢𝒢(𝜇𝜇)W
• | ⟩𝜓𝜓 = 𝑊𝑊| ⟩0
• ℬ = 𝑉𝑉†ℳ𝑉𝑉
• Deterministic quantum model: 
• 𝑓𝑓𝜃𝜃 = 𝜓𝜓 𝒢𝒢†(𝜇𝜇)ℬ𝒢𝒢(𝜇𝜇) 𝜓𝜓 , 𝜇𝜇 ∈ 𝜃𝜃
• By linearity of the expectation the partial derivative: 
• 𝜕𝜕𝜇𝜇𝑓𝑓𝜃𝜃= 𝜓𝜓 𝒢𝒢†ℬ(𝜕𝜕𝜇𝜇𝒢𝒢) 𝜓𝜓 + 𝜓𝜓 (𝜕𝜕𝜇𝜇𝒢𝒢)†ℬ𝒢𝒢 𝜓𝜓



Parameter-shift rule

𝜕𝜕𝜇𝜇𝑓𝑓𝜃𝜃= 𝜓𝜓 𝒢𝒢†ℬ(𝜕𝜕𝜇𝜇𝒢𝒢) 𝜓𝜓 + 𝜓𝜓 (𝜕𝜕𝜇𝜇𝒢𝒢)†ℬ𝒢𝒢 𝜓𝜓
• Each term is not a quantum expectation value
• 𝜕𝜕𝜇𝜇𝒢𝒢 is unitary?
• How to compute the 𝜕𝜕𝜇𝜇𝑓𝑓𝜃𝜃 using quantum computation?



Parameter shift rule

• Let fμ = <M>μ be a quantum expectation value that depends on a 
classical parameter μ. 

• A parameter-shift rule is an identity of the form
• 𝜕𝜕𝜇𝜇𝑓𝑓𝜇𝜇 = ∑𝑖𝑖 𝑑𝑑𝑖𝑖𝑓𝑓𝜇𝜇+𝑠𝑠𝑖𝑖
• where {ai } and {si } are real scalar values.



Parameter shift rule

• 𝛻𝛻𝑗𝑗𝑓𝑓𝜇𝜇 = 𝑓𝑓 𝜇𝜇+𝑠𝑠 −𝑓𝑓(𝜇𝜇−𝑠𝑠)
2𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠

• Estimation of analytical gradient (unbiased)
• Finite-difference rule: estimation of approximate gradient (biased)

|0>
.
.
.
|0>

Wϑ+s
yϑ+s

|0>
.
.
.
|0>

Wϑ-s
yϑ-s



Challenges in training VQA for ML

• Inherently stochastic environment due to finite budget for 
measurement

• Hardware noise 
• Barren plateaus

𝑉𝑉𝑑𝑑𝑡𝑡 𝜕𝜕𝜗𝜗𝑓𝑓 = (𝜕𝜕𝜗𝜗𝑓𝑓)2 𝑊𝑊 − 𝜕𝜕𝜗𝜗𝑓𝑓 𝑤𝑤
2

• The variance of the gradient of the loss function vanishes
• Gradients become concentrated around zero



Training Quantum models

• Find the optimal measurements of quantum models for typical 
machine learning cost functions only have relatively few degrees 
of freedom. 

• The process of finding these optimal models (i.e., training over the 
space of all possible quantum models) can be formulated as a 
low-dimensional optimization problem. 

• Kernel-based approach



Training

From a learning theory perspective, training can be phrased as 
Regularized empirical risk minimization problem



Regularized empirical risk minimization of 
quantum models
• Let 𝒳𝒳,𝜖𝜖 be data input and output domains
• p a probability distribution (unknown) on 𝒳𝒳 from which data is 

drawn
• 𝐿𝐿:𝒳𝒳𝑥𝑥𝜖𝜖𝑥𝑥ℝ → [0,∞] a loss function that quantifies the quality of 

the prediction of a quantum model 
• 𝑓𝑓 𝑥𝑥 = 𝑡𝑡𝑡𝑡 𝜌𝜌 𝑥𝑥 ℳ
• 𝑅𝑅𝐿𝐿 𝑓𝑓 = ∫ 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝑓𝑓 𝑥𝑥 𝑑𝑑𝑝𝑝(𝑥𝑥,𝑦𝑦) expected loss

• �𝑅𝑅𝐿𝐿 𝑓𝑓 = 1
𝑀𝑀
∑𝑚𝑚=1
𝑀𝑀 𝐿𝐿(𝑥𝑥𝑚𝑚,𝑦𝑦, 𝑓𝑓(𝑥𝑥𝑚𝑚))

• 𝑖𝑖𝑖𝑖𝑓𝑓ℳ𝜖𝜖ℱ𝜆𝜆 ℳ ℱ
2 + �𝑅𝑅𝐿𝐿 𝑡𝑡𝑡𝑡{𝜌𝜌 𝑥𝑥 ℳ} , 𝜆𝜆 𝜖𝜖 ℝ+



The Representer Theorem

• 𝜅𝜅:𝒳𝒳𝑥𝑥𝒳𝒳 → ℝ, F RKHS
• 𝒟𝒟 = (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑀𝑀,𝑦𝑦𝑀𝑀) ∈ 𝒳𝒳𝑥𝑥𝜖𝜖
• 𝑠𝑠: 0,∞ → ℝ strictly monotonic increasing regularization function
• 𝐿𝐿:𝒳𝒳𝑥𝑥𝜖𝜖𝑥𝑥ℝ → [0,∞]
• Any minimizer of the regularized empirical risk
• 𝑓𝑓𝑜𝑜𝑒𝑒𝑖𝑖 = 𝑑𝑑𝑡𝑡𝑠𝑠𝑑𝑑𝑖𝑖𝑖𝑖𝑓𝑓𝜖𝜖ℱ 𝑠𝑠 𝑓𝑓 ℱ

2 + �𝑅𝑅𝐿𝐿 𝑓𝑓
• Admit a representation of the form
• 𝑓𝑓𝑜𝑜𝑒𝑒𝑖𝑖(𝑥𝑥) = ∑𝑚𝑚=1

𝑀𝑀 𝛼𝛼𝑚𝑚𝜅𝜅(𝑥𝑥𝑚𝑚, 𝑥𝑥)
Optimal measurement: ℳ𝑜𝑜𝑒𝑒𝑖𝑖=∑𝛼𝛼𝑚𝑚𝜌𝜌(𝑥𝑥𝑚𝑚) , 𝑥𝑥𝑚𝑚 ∈ 𝒳𝒳



Kernel-based training versus variational training

Training quantum models can be formulated as a finite-
dimensional convex program



Quantum Machine Learning models

ProbabilisticDeterministic
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uploading
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Quantum Machine Learning models



Quantum Machine Learning models



Performance evaluation



Software 



Quantum Noise

Environment 



Dissipative Quantum Machine Learning



Practical: Classification
What to do:
Forms 4 groups, each need to present a small pitch on sunday
Challenge, improve, modify of:



Questions?
Email me 

Thanks!
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