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I. Quantum Otto Engine
Stroke 1: from � = 0 to � =  �1

Work recieved by 
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Increase of 
the magnetic 
field intensity 

(quantum 
adiabatic) 

Initial 
state of 

the cycle

stroke 1

• Hamiltonian during stroke 1:

with �1(�) being a function such that �1(0) =  ��  and  �1(�1) =  �ℎ

• Evolution operator during stroke 1:

Dyson series (see reminder 
in Section II)

Because



I. Quantum Otto Engine

• Evolution of the qubit state during stroke 1:

→  The state of the qubit remains constant under 
such evolution! 

→  We could have predicted that because

• Work exchange during stroke 1:

since  �ℎ ≥   ��



I. Quantum Otto Engine

• Heat exchange during stroke 1:

→  This was expected because during the stroke 1, the qubit evolves unitarily, with 
no interaction with any bath, so no heat exchanges were expected.

Thanks to the 
invariance of the 

Trace under 
cyclic 

permutations

Similar computation for stroke 3



I. Quantum Otto Engine
Stroke 2: from � = �1 to � =  �2

• Hamiltonian during stroke 2:

• Assuming weak coupling with the hot bath, so that the Born and Markov (memoryless dynamics) (see 
Chapter 4 of Quantum Physics Lectures) are valid and the dynamics during stroke 2 is given by the 
following GKLS master equation:

(constant)

Interaction with 
thermal bath at �ℎ

(isochoric 
process)

Heat recieved 
by the spin, 

�2 ≥  0 

stroke 2

with

and

(Additional information (not useful here): the coefficients �+, �− and �� are actually defined from

when evaluated at � = �ℎ , � =−  �ℎ and � = 0, 
respectively)



I. Quantum Otto Engine

• Evolution of the qubit state during stroke 2:

and

As already shown in Chapter 4 of Quantum Physics Lecture, and recalled in the beginning of these 
notes,  the dynamics of the excited population is given by 

(using the master equation 
of the previous page)

with

Remembering that the stroke takes place between [�1; �2], we replace 0 by  �1 and � by � − �1 in the 
right-hand side, implying, for all t in  [�1; �2],   

( since                                 )

Assuming that the duration of stroke 2 is sufficient for the qubit to 
thermalize with the hot bath, meaning �2 − �1 ≫  �1 = (�+ +  �−)−1   

Under such conditions, we therefore have



I. Quantum Otto Engine

• Evolution of the qubit state during stroke 2 (continuing):

Similarly, for the coherences in the basis {|� , |� }, its dynamics is given by 

(using the master equation 
of the previous page)

Remembering that the stroke takes place between [�1; �2], we replace 0 by  �1 and � by � − �1 in the 
right-hand side, implying, for all t in  [�1; �2], 

Then, since (which is diagonal in the  basis {|� , |� }), 

we have 

Then, combining  we obtain:

Thermal 
state at the 
hot bath’s 

temperature

with



I. Quantum Otto Engine

• Work exchange during stroke 2:

since the Hamiltonian is time-independent during stroke 2 

• Heat exchange during stroke 1:

since the 
Hamiltonian is 

time-independent 
during stroke 2 

Similar calculation for stroke 4



I. Quantum Otto Engine

• Energetic balance over one cycle

we find:

we can verify that as it should be since the the cycle is closed 

• Condition for work extraction

v Work extracted per cycle (=the work exchange with the qubit over one cycle):  

v Over one cycle, we want to extract work, meaning we want



I. Quantum Otto Engine

• Effciency

As usual, the efficiency is defined as the ratio of the quantity we care about, here, the total 
extracted work |�1 +  �3| =  − �1 −  �3  , divided by its cost, here the heat provided 

by the hot bath, �2  

called the Otto efficiency

v  We found the same Otto efficiency as for classical Otto cycle• Observation:

v  We know that for classical heat engines, their efficiency is always 
upper bounded by the Carnot efficiency ������� =  1 −  ��

�ℎ

here

work extraction condition

here as well we are upper 
bounded by the Carnot 

effciciency!

• Question: Why don’t we reach the Carnot efficiency?



I. Quantum Otto Engine

• Reason for not reaching the Carnot efficiency

Work recieved by 
the spin,
 �1 ≥  0

Interaction with 
thermal bath at �ℎ

(isochoric 
process)

Heat recieved 
by the spin, 

�2 ≥  0 

Work provided by 
the spin,
 �3 ≤  0

Interaction with 
thermal bath at �� 

(isochoric 
process)

Heat provided by 
the spin, �4 ≤  0 

Decrease of the 
magnetic field

(quantum 
adiabatic)

Thermal state 
at  �� (inverse 
temperature 

�� =  1/(����) )  

Increase of 
the magnetic 
field intensity 

(quantum 
adiabatic) 

Initial 
state of 

the cycle

stroke 1 stroke 2 stroke 3

stroke 4

Thermal state at  �ℎ 
(inverse temperature 

�ℎ =  1/(���ℎ) )  

Strokes 2 and 4, in contact with the hot bath and cold bath are irrevesible!

This is because at the moment of the interaction with the hot bath, the qubit is 
not in equilibrium with the hot bath (meaning the qubit is not in the thermal 
state at temperature �ℎ); same thing for the cold bath, at the moment of the 
interaction, the qubit is not in equilibrium with the cold bath. 
→ This leads to irreversibility (expressed by a striclty positive entropy 
production), loss of extractable work, and therefore loss of efficiency

Loss of extractable work

Loss of efficiency



II. Irreversibility, entropy 
production, and second law  



A. General definition and context

Let’s consider a driven quantum system S interacting with a bath B in a thermal state at 
temperature T: 

We assume no initial correlations between system and bath:

The entropy production at time t associated with the open evolution/dynamics of the 
quantum system S is: 

II. Irreversibility, entropy production, and second law  

with

(M. Esposito, K. Lindenberg, C. Van den 
Broeck,  New J Phys 12, 013013 (2010))



Observations: • �(�) has the same form as in classical thermodynamics

• �(�) ≥  0 

Term of exchange of 
entropy between system 

and bath = heat flow

II. Irreversibility, entropy production, and second law  

(always positive when there is no initial correlations 
between system and bath, meaning when the intial 
state is separable:                                         )



Informational form: The entropy production can be re-expressed as

Represents the generation of 
 between S and B

Quantifies how much the 
state of the bath changed 

from 0 to t

relative entropy = “pseudo distance”

mutual information = measure of the correlation between S and B

In this form, �(�) appears to represents the amount of information lost in the bath

Irreversibility, at the quantum scale, comes from this loss of information 

II. Irreversibility, entropy production, and second law  



Observations:

II. Irreversibility, entropy production, and second law  

• This definition of entropy production is valid for S and B initially 
uncorrelated (meaning ���(0) =  ��⨂��(0)), with B being initially in a 
thermal state, and for arbitrary coupling strength between S and B.

• In the limit of weak coupling, we saw (see Lecture 1) that all definitions of 
heat become equivalent to the weak coupling expression:

• Then, in the weak coupling limit, the entropy production can be expressed 
with quantities of S only:



• We consider a system S interacting with a bath B from a time �0 to �1

• The resulting unitary operation on SB is denoted ���(�0, �1) or simply ���

• Uncorrelated initial state: 

• We express the local state of S and B in their repective eigenbasis:

• The final (average) state of SB is:

• The reduced final (average) state of S is:

• The reduced final (average) state of B is:

• We can also express the local final (average) states in their respective eigenbasis:

II. Irreversibility, entropy production, and second law  

B. Entropy production at the quantum trajectory level



Reminder: Quantum measurements - projective measurements

with

measurement:

probability of outcome r:

r: outcome of the measurement

A projective measurement is described by a collection of projectors:

v Typical situation: we have a basis {|�� }� (often the eigenbasis of an observable)



II. Irreversibility, entropy production, and second law  

We consider the following experimental protocol - the forward process

→ Measure S in the basis {|� }� (= eigenbasis of ��)

we obtain the result n with probability �� =   �|��|�   

state of S just after the measure: |�  �| 

• (i) Measure of the state of S: 

→ Measure B in the basis {|� }� (= eigenbasis of ��)

we obtain the result ν with probability �� =   �|��|�   

state of B just after the measure: |�  �| 

• (ii) Measure of the state of B: 

• (iii) Unitary evolution ���

state of SB after the evolution:  ���|�  �|⨂|�  �|���
†  



II. Irreversibility, entropy production, and second law  

we obtain the result m, μ with probability:  

state of SB just after the measure: |��  ��|⨂|��  ��| 

• (iv) Measure of SB in the basis {|�� ⨂|�� }�,� (= eigenbasis of �’��)  

→ We obtain the “trajectory” �, �  →  �, � with a probability: 

→ Stochastic process: each quantum trajectory  �, �  →  �, �   happens with a 
probability ��(�, � , �, �) 



II. Irreversibility, entropy production, and second law  

We consider the following backward experimetnal process

• (i) Measure of SB in the basis {|�� ⨂|�� }�,� (= eigenbasis of �’��)  

we obtain the result m, μ with probability:  

• (ii) Reverse unitary evolution: 

state of SB after the evolution:  ���
† |��  ��|⨂|��  ��|��� 

v The aim is to realize the backward process

v But we will consider situations in which we lost some information during the forward 
process

v For that, we will start the backward process from a state ��� which is slightly different 
from the final state of the forward process, �’��  

state of SB just after the measure: |��  ��|⨂|��  ��| 



II. Irreversibility, entropy production, and second law  

• (iii) Measure of SB in the basis {|� ⨂|� }�,� (= eigenbasis of ���)   

we obtain the result n, ν with probability:  

state of SB just after the measure: |�  �|⨂|�  �| 

→ We obtain the “trajectory” �, �  →  �, � with a probability: 

→ Stochastic process: each quantum trajectory  �, �  →  �, � happens with a 
probability ��(�, � , �, �) 



II. Irreversibility, entropy production, and second law  

• Stochastic entropy production (for one given trajectory): 

The entropy production (for one trajectory) 
is determined by how unlikely the backward 
process is compared to the forward process

v

• Average entropy production: 

v

• Average trajectory: 



II. Irreversibility, entropy production, and second law  

Average entropy production for different choice of  ��� (the initial state 
of the backward process)

• (a) We assume we lost the information of the final correlations between S and B (for 
the forward process), and the change of state of B:

 Doing the math (exercise), we obtain

• (b) Now we assume we only lost the information of the final (for the forward process) 
correlations between S and B:

 Doing the math (exercise), we obtain

precisely the information we lost!!

precisely the information we lost!!

• (c) Now we assume we did not lost any information:

 Doing the math (exercise), we obtain



Conclusion:

II. Irreversibility, entropy production, and second law  

Observation: This also show the subjective character of entropy production: it depends on 
the level of accessible information

• The entropy production indeed represents the lost information

• This lost information prevents ones to exaclty perform the reverse process

•  This loss of information is responsible for the irreversibility of the dynamics 

G. Manzano, J. M. Horowitz, J. M. R. Parrondo: Quantum Fluctuation Theorems for 
Arbitrary Environments: Adiabatic and Nonadiabatic Entropy Production. Phys. Rev. X 8, 

031037 (2018)

G. T. Landi, M. Paternostro: Irreversible entropy 
production: From classical to quantum. Rev. Mod. Phys. 

93, 035008 (2021)

References:



Entropy production is a central quantity in

II. Irreversibility, entropy production, and second law  

• Fluctuations (Thermodynamic Uncertainty Relation, TUR)

• Efficiency of Quantum Heat engine and quantum refrigerator

• Energy cost of quantum reset  (extension of Landauer principle)

• Accuracy of Quantum Clock

• Energy cost of noisy quantum operation



C. Application: calcul of the entropy production during an Otto cycle

II. Irreversibility, entropy production, and second law  

(i) Entropy production during stroke 2

Interaction with 
thermal bath at �ℎ

(isochoric 
process)

Heat recieved 
by the spin, 

�2 ≥  0 

stroke 2

Thermal state at  �ℎ 
(inverse temperature 

�ℎ =  1/(���ℎ) )  

heat exchange during stroke 2 variation of entropy of the 
qubit S during stroke 2



II. Irreversibility, entropy production, and second law  

• von Neumann entropy of the thermal states:

Similarly, 



II. Irreversibility, entropy production, and second law  

• All together, the entropy production during stroke 2 is:

• Similarly, the entropy production during stroke 4 is:

The entropy production during stroke 2 is indeed due to the fact that the state of S just before the interaction 
with the hot bath is ��(�1) =  ��ℎ(��, ��) which is different from the hot equilibrium state  ��ℎ(�ℎ, �ℎ)

The entropy production during stroke 4 is indeed due to the fact that the state of S just before the interaction 
with the cold bath is ��(�3) =  ��ℎ(�ℎ, �ℎ) which is different from the cold equilibrium state  ��ℎ(��, ��)



II. Irreversibility, entropy production, and second law  

• All together, the entropy production during a whole Otto cycle is

• Additionally, one can show explicitly that �(2) and �(4) are indeed 
related to loss of extractable work; more precisely

(see more detail in next section)

work extracted 
during one Otto 

cycle



III. Quantum Carnot Engine



III. Quantum Carnot Engine

Work recieved by 
the spin,
 �1

� ≥  0

Interaction 
with thermal 

bath at �ℎ
while decrease 

of magnetic 
field intensity 
(isothermal 

process)

Heat recieved 
by the spin, 
�2

� ≥  0, and 
work provided 

by the spin 
�2

� ≤ 0 

Work 
provided by 

the spin,
 �3

� ≤  0

Interaction with thermal bath at �� 
while increase of the magnetic 

field intensity 
(isothermal process)

Heat provided by the spin, 
�4

� ≤  0, and work received 
by the spin  �4

� ≥  0

Decrease of the 
magnetic field

(quantum 
adiabatic)

Thermal state 
at  �� (inverse 
temperature 

�� =  1/(����) )  

Quantum Carnot cycle with a qubit (spin-1/2)

Observation: as for the Otto cycle, we define the ground state energy of  the spin to be equal to 0

→ the energy splitting is controled by the 
intensity of the applied magnetic field

Increase of 
the magnetic 
field intensity 

(quantum 
adiabatic) 

Initial 
state of 

the cycle

stroke 1 stroke 2 stroke 3

stroke 4

Thermal 
state at  �ℎ 

(inverse 
temperature 

�ℎ =  1/
(���ℎ) )  

Thermal 
state at  

�ℎ 

Thermal 
state at  

�� 



III. Quantum Carnot Engine

• The cyclic structure imposes

• Efficiency

See following additional details

• The cycle is reversible and there is no entropy production since the 
state of S is in thermal equilibrium before each interaction with the 
respective thermal bath (stroke 2 and 4)  

Carnot efficiency



III. Quantum Carnot Engine

• In order to obtain a thermal state at temperature �ℎ at the end of the first stroke, one can show that we must 
have 

• Stroke 1: we can show:

Additional details (exercise)

• Similarly, in order to obtain a thermal state at temperature �� at the end of the third stroke, one can show that 
we must have 

• Stroke 2: assuming quasi-static decrease of the amplitude of the  magnetic field  (so that the qubits remains at all 
time in the instantaneous thermal state), we can show:

• Stroke 3: we can show:

and

and

and

• Stroke 4: assuming quasi-static increase of the amplitude of the magnetic field (so that the qubits remains at all 
time in the instantaneous thermal state), we can show:

and

• With all that, we obtain

• We can also show that the extracted work over one Carnot cycle is maximal and equal to the work extracted over one Otto 
cycle plus the dissipated work during the irreversible strokes of the Otto cycle:



IV. The question of quantum 
advantages  



IV. Quantum advantages in quantum engines

• Bath containing quantum coherences (atoms prepared with quantum coherences between some energy levels)

• Bath containing quantum correlations (more precisely, bath composed of pairs of entangled atoms)

• Collective effects: instead of having a single qubit undergoing the cycle, we use an ensemble of qubits. Interesting 
collective effects can emerge, akin to superradiance.

Results in increase of efficiency 

Recently realized experimentally

Results in increase of output power 

Recently realized experimentally

Results in increase of efficiency 

J. Kim, S.-h. Oh, D. Yang, J. Kim, M. Lee et al.: A photonic quantum engine driven by 
superradiance. Nat. Photonics 16, 707 (2022)

• Bath of harmonic oscillator in coherent or squeezed states

Results in increase of efficiency 

Recently realized experimentally J. Klaers, S. Faelt, A. Imamoglu, E. Togan: Squeezed Thermal Reservoirs as a Resource for a 
Nanomechanical Engine beyond the Carnot Limit. Phys. Rev. X 7, 031044 (2017)

J. Kim, S.-h. Oh, D. Yang, J. Kim, M. Lee et al.: A photonic quantum engine driven by 
superradiance. Nat. Photonics 16, 707 (2022)

• Strong coupling effects: strong coupling between the system and the baths

Results in increase of output power 



IV. Quantum advantages in quantum engines

• Observation: in the above examples, one can outperform classical thermal engines (and refrigerators), but we use 
additional resources (quantum coherences, quantum correlations, entanglement, squeezing). Then, in some sense, 
we do more but with more resources. Can we do more with strictly the same resources?

• Collective effects, in some sense, provide such quantum advantages

• Quantum coherences generated during the dynamics can induce such genuine 
quantum advantage in term of fluctuations (the quantum engine is more stable, 
meaning it exhibits smaller fluctuations compared to its classical counterpart).

Yes !

J. A. Almanza-Marrero, G. Manzano: Reassessing quantum-thermodynamic 
enhancements in continuous thermal machines. arXiv:2403.19280 (2024)



V. Experimental implementation of 
quantum autonomous refrigerator



V. Experimental implementation

Autonomous reset of a qubit

Resonance condition

�12 �23

�1 �2 �3

Target qubit

ℏ�1
ℏ�2

ℏ�3

Effective three body interaction: with

Remove 1 excitation from 
�3 and �1, while adding 2 

excitations to �2

The other way around



V. Experimental implementation

• How to ensure that only the transition removing 1 excitation from �1 occurs?
Symmetry breaking with temperature gradient:

ℏ�1

ℏ�2

ℏ(2�2 − �1) Effective temperature ����:

hot bath, �ℎ cold bath, ��



V. Experimental implementation

• Conclusion:

The transition |1 3  ⟷  |0 3 is resonant and coupled with the transition |0 1|2 2  ⟷  |1 1 |0 2

The transition |1 3  ⟷  |0 3 will thermalize to the effective temperature ����

ℏ�3ℏ(2�2 − �1)

�

Obs:

The target qubit is refrigerated to a temperature ���� colder than the available cold bath!



V. Experimental implementation

Experimental realization (quantum circuit)

Performances: 

M. A. Aamir, P. Jamet Suria, J. A. Marín 
Guzmán, C. Castillo-Moreno, J. M. 

Epstein, N. Yunger Halpern, S. 
Gasparinetti: Thermally driven quantum 

refrigerator autonomously resets a 
superconducting qubit. Nat. Phys. 21, 

318 (2025)

• Excited-state population reaches 3 × 10−4 ± 2 × 10−4 (effective temperatures 22 (+2, −3) mK) 

•  State-of-the-art reset protocols achieve populations ranging from 8 × 10−4 to 2 × 10−3 (effective temperatures 
ranging from 40 mK to 49 mK)

• The relaxation time can be decreased by a factor 60 (compared to natural relaxation timescale), reaching 
250��

• Quantum thermal machines can be useful and can also be integrated with quantum information-processing 
units

→ Autonomous refrigeration: no need of external control (remembering that external control brings in a lot of 
heating, see [M. Fellous-Asiani et al.: PRX Quantum 4, 040319 (2023)])



VI. Opening: work cost of quantum 
measurements



• Quantum measurements (level 1): projective measurements

with

measurement:

probability of outcome r:

r: outcome of the measurement:

Observation: if �� is of rank 1, meaning �� =  |�  �|, �|�  is always a pure 
state 

VI. Opening: work cost of quantum measurements
In this section, we present a research application of the concepts of heat and work for quantum systems (see 
Lecture 1) combined with the concept of entropy production or second law of thermodynamics (see beginning of 
lecture 2), for quantum systems. 



• Formalism for general quantum measurements (POVM) (level 2):

with

measurement:

probability of outcome r:

r: outcome of the measurement:

Observation: if � is a pure state, �|�  is always a pure state 

proof: ⟹ ⟹



• Formalism for general quantum measurements (POVM) (level 3):

measurement:

probability of outcome r:

with

H. M. Wiseman, G. J. Milburn: Quantum Measurement and Control (2009)

Observation: even if � is a pure state, �|�  is NOT NECESSARY a pure state! 



• Formalism for general quantum measurements (POVM) (level 3):

measurement:

probability of outcome r:

with

Inefficient measurement:
• for a given r, the different outcomes k are not distinguished

• the detector does not resolve the k degree of freedom 

• The resulting state �|� is a mixed state (not full knowledge about the outcome state )



• Important observation: in general,

quantum measurements do inject energy into the system

and

applications: cooling quantum systems,
 quantum measurement engines

Where does this injected energy come from?
 
Does it come for free? 
Is it heat? Is it work? 

Are the envolved resources related to the quality of the 
measurement?

?
Problem: 
we do not have a well established microscopic model for quantum measurement 
- we only have an effective description



Microscopic model - version 1
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between B and A

• T. Sagawa and M. Ueda, Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure, Phys. Rev. Lett. 
102, 250602 (2009).

• K. Funo, Y. Watanabe, and M. Ueda, Integral quantum fluctuation theorems under measurement and feedback control, Phys. Rev. E 88, 052121 (2013)

• K. Abdelkhalek, Y. Nakata, and D. Reeb, Fundamental energy cost for quantum measurement, arXiv: 1609.06981 (2018)].

• L. Mancino, M. Sbroscia, E. Roccia, I. Gianani, F. Somma, P. Mataloni, M. Paternostro, and M. Barbieri, The entropic cost of quantum generalized 
measurements, npj Quantum Inf. 4, 1 (2018).

Issue: Quantum measurement applied on A 

• Which resources are involved? 
• What is the work involved in such measurement? 



Microscopic model - version 2

• A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, Understanding quantum measurement from the solution of dynamical 
models, Phys. Rep. 525, 1 (2013).

• H.-S. Goan, G. J. Milburn, H. M. Wiseman, and H. Bi Sun, Continuous quantum measurement of two coupled quantum dots using a 
point contact: A quantum trajectory approach, Phys. Rev. B 63, 125326 (2001).

• H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
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Main point: no quantum measurement involved in the microscopic description 

• No hidden energetic cost
• Analysis is thermodynamically consistent

Main questions: • What is the minimal work expenditure to realize a quantum measurement?
• What is the relation between the work invested and the quality of the 

mesurement?
• Do quantum measurements invovle heat exchanges?



Work cost = work required to realize the overall operation

variation of the 
coupling energy 

between A and B

Minimal work cost

We apply the standard definition we saw in Lecture I:  



The energy change of the bath is lower bounded thanks to the 2d law of thermodynamics: 

We apply that to the system S and the measurement apparatus A:  

[M. Esposito, K. Lindenberg, and C. Van den Broeck, 
Entropy production as correlation between system and 
reservoir, New Journal of Physics 12, 013013 (2010)]

We apply the standard definition we saw in this Lecture II:  

Substituting in                                                                           , we get 



Finally, using constraints imposed by the structure of the measurement, we obtain

Average residual correlations between S and A

• Average gain of information when reading the output versus not 
reading it

• Final information shared with the memory, ��:�(��)

• level of distinguishability of the ��|�(��) (Holevo information)

• Characterizes the level of efficiency of the measurement

variation of (non-
equilibrium) free energy

Work required to 
reset AM

C. L. Latune, C. Elouard: A thermodynamically consistent approach to the energy costs of quantum measurements. Quantum 9, 1614 (2025)



3.2 Consequences

• Additional terms with respect to local manipulation of  S (� ≥  ∆��)

• Residual correlations bring extra cost (represents energetic losses)

• Trade-off  cost Vs quality (efficiency)

• Energy gained by the system during a measurement does not come for free, 
it costs work ⇒ this has some implications for quantum measurement 
engines

• Saturation of  the lower bound (⇒ measurement with zero entropy 
production)?



Some simulations

Double trade-off: 

measurement efficiency Vs work cost Vs velocity

velocity of the measurementstrength of the coupling system-apparatus 
(determines the efficiency of the measurement)

C. L. Latune, C. Elouard: A thermodynamically consistent approach to the energy costs of quantum measurements. Quantum 9, 1614 (2025)


