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I. Brief historical perspective

Brief historical perspective:

» First research articles on what will become Quantum Thermodynamics appeared

from the years 1960 to 1980.

Papers mainly discussing the extension of thermal machines and Carnot cycle

to quantum systems:

e —

VoLUuME 2, NUMBER 6

PHYSICAL REVIEW LETTERS

@RCH 15, 1959

THREE~LEVELAS HEAT ENGINES*
| THREE-LEVEL
H. E. D. Scovil and E. O. Schulz-DuBois

Bell Telephone Laboratories,
Murray Hill, New Jersey
(Received January 16, 1959)

The purpose of this note is to demonstrate that
three-level masers'>? can be regarded as heat
engines. The principal conceptual difference
between these and conventional heat engines is
that in the 3-level maser one is concerned with
the discrete energy levels of a particle’s internal
energy whereas in a conventional heat engine one
is concerned with the continuous spectrum of
energies associated with external motion of the
working substance. In treating a 3-level maser
as a prototype of heat engine, a particular ad-
vantage is, in our opinion, the resulting con-
ceptual simplicity. Especially, it is easily shown
that the limiting efficiency of a 3-level maser is
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FIG. 1. Three-level system in thermal contact with
two heat reservoirs.

The levels 1 and 3 are in thermal contact,
through a filter passing frequencies in the vicinity
of Vp and rejecting frequencies in the vicinity of
v; and Vs, With a heat reservoir at temperature
T,. The temperature is indicated in the figure
by showing schematically the Boltzmann distribu-

tion of this heat reservoir. Levels 2 and 3 are

v

“Laser” but elecromagnetic in the range of the microwave

(wavelength between 1mm and 1m)




I. Brief historical perspective

Brief historical perspective:

» First research articles on what will become Quantum Thermodynamics appeared
from the years 1960 to 1980.

Papers mainly discussing the extension of thermal machines and Carnot cycle
to quantum systems:

e —

VOLUME 2, NUMBER 6 PHYSICAL REVIEW LETTERS @RCH 15, 1959
THREE—LEVELAS HEAT ENGINES™ \ t‘ %
% FLTER o w2 o

PHVYSICAL REVIEW VOLUME 156, NUMBER 2 10 APRIL 1967

Quantum Equivalent of the Carnot Cycle

J. E. Geusic, E. O. Scuvrz-DuBois,* axp H. E. D. ScoviL
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 27 October 1966)

The concept of a quantum heat pump is proposed as a convenient model in the thermodynamic interpreta-
tion of certain multilevel processes. The ideal quantum heat engine is defined as an idealization of realistic
pumped multilevel systems in much the same way that the well-known Carnot cycle is an idealization of
physically realizable, classical processes or engines. There is evidence that the conventional Carnot cycle
can be operated only between reservoirs at absolute temperatures of identical sign. No such restriction
applies, however, to the quantum heat engine. Thus it may be used to calibrate negative absolute tempera-
tures by relating them directly to positive temperatures. Negative efficiencies or efficiencies greater than
unity have partlcularly simple interpretations in the quantum-heat-engine madei An important application
of these concepts is in the calculation of optical maser parameters.




I. Brief historical perspective

Brief historical perspective:

» First research articles on what will become Quantum Thermodynamics appeared
from the years 1960 to 1980.

Papers mainly discussing the extension of thermal machines and Carnot cycle
to quantum systems:

e —

VOLUME 2, NUMBER 6 PHYSICAL REVIEW LETTERS @RCH 15, 1959
* \
THREE~LEVELAS HEAT ENGINES 3 g
% FILTER WY

PHVYSICAL REVIEW VOLUME 156, NUMBER 2 10 APRIL 1967

Quantum Equivalent of the Carnot Cycle

Entropy production for | quantum dynamical semigroups

Herbert Spohn?

Department of Physics, Princeton University, Princeton, New Jersey 08540
(Received 15 August 1977)

g open quantum systems weakly coupled to their bath

In analogy to the phenomenological theory of irreversible thermodynamics we define the entropy
production for an arbitrary quantum dynamical semigroup with a stationary state. We prove that the
entropy production is convex and positive and that the entropy production is a measure of dissipativity of
the semigroup. The entropy production is used to prove the approach to equilibrium and to classify the
stationary states of semigroups arising in the weak coupling limit.

| 1227 J. Math. Phys. 19({5), May 1978 0022-2488/78/1805-1227%$1.00 © 1978 American Institute of Physics 1227




I. Brief historical perspective

Brief historical perspective:

» First research articles on what will become Quantum Thermodynamics appeared
from the years 1960 to 1980.

Papers mainly discussing the extension of thermal machines and Carnot cycle to
quantum systems, and later questions of irreversibility and entropy production:

S ———
VoLUME 2, NUMBER 6 PHYSICAL REVIEW LETTERS @RCH 15, 1959

THREE_LEMM _ %
: Physics, Volume 38

PHVYSICAL REVIEV by D \ ) ; . 10 APRIL 1967

IRREVERSIBLE THERMODYNAMICS FOR
Entropy prod QUANTUM SYSTEMS WEAKLY COUPLED ups
Herbert Spoh TO THERMAL RESERVOIRS

Department of Ph/ HERBERT SPOHN*
(Received 15 Aug

s weakly coupled to their bath

Belfer Graduate School of Science

th .
= anal!:gy to Yeshiva University oPY
production for ar . o it the
: New York, N.Y. :
entropy productic vity of
the semigmony. T JOEL L. LEBOWITZ? fy the
stationary states ¢
Service de Physique Théorique
| 1227 J. Math, Phys. 19(5), N CEN Saclay Physics 1227
Gif-sur- Yvette, France




I. Brief historical perspective

Brief historical perspective:

» First research articles on what will become Quantum Thermodynamics appeared
from the years 1960 to 1980.

Papers mainly discussing the extension of thermal machines and Carnot cycle to
quantum systems, and later questions of irreversibility and entropy production:

Vo J. Phys. A: Math. Gen,, Vol. 12, No. 5, 1979, Printed in Great Britain >
THR LETTER TO THE EDITOR
PHYSICAL RH RIL 1967

The quantum open system as a model of the heat engine

Robert Alicki
E t Institute of Physics, Gdansk University, 80-952 Gdansk, Poland

Received 9 January 1979

Herbert
i 5 upled to their bath

Departmen Abstract. The quantum open system weakly coupled to thermal reservoirs at different
{Received temperatures and under the influence of slowly varying external conditions is studied. The

famous Carnot inequality for the efficiency of any heat engine is obtained.
In analog
productior
LDy Py 1. Introduction
the semigi
stationary ; 2 -y

Recent studies on the entropy balance in quantum open systems (Alicki 1976,
1227 J. Math. Phys McAdory and Schieve 1977, Spohn 1978, Spohn and Lebowitz 1979, Alicki 1979a) ]
| i ' give in some cases a rigorous and elegant explanation of the fundamental laws of 1227

phenomenological non-equilibrium thermodynamics.




I. Brief historical perspective

Brief historical perspective:

» First research articles on what will become Quantum Thermodynamics appeared
from the years 1960 to 1980.

Papers mainly discussing the extension of thermal machines and Carnot cycle to
quantum systems, and later questions of irreversibility and entropy production:

__.//:‘--"_‘_‘Pkl!jlghsth The Journal of Chemical Physics ag Share - e% Tools Q Seari
RESEARCH ARTICLE | FEBRUARY 15 1984
PHYSICAL A quantum mechanical open system as a model of a heat ||iL 1967
engine ¥

Ronnie Kosloff

‘W) Check for updates

Entrop}

J. Chem. Phys. 80, 1625-1631 (1984)

Herl https://doi.org/10.1063/1.446862  Article history C
Depa bled to their bath
{Recs A quantum model of a heat engine is analyzed. This engine is constructed from two coupled
a6l oscillators in interaction with a warm and cold reservoir. Power is extracted by an external
produ periodic driving force. As a function of control parameters a maximum in power is obtained,
E:z and a decline of thermodynamic efficiency below the ideal Carnot value. This irreversibility is
statig a consequence of the mechanism devised to extract power in its perturbing the energy level
| 1227 J. Math structure of the engine. In the limit of weak coupling to the driving force the efficiency at 1997

maximum power obtains the value of n=1-((T /T ,))"2.




I. Brief historical perspective

Brief historical perspective:

» First research articles on what will become Quantum Thermodynamics appeared
from the years 1960 to 1980.

Papers mainly discussing the extension of thermal machines and Carnot cycle to
quantum systems, and later questions of irreversibility and entropy production

* These pioneering papers provided the initial questions and research lines of
quantum thermodynamics, which really started around 2000.



II. Current problematics of Quantum Thermodynamics

 Nowadays, the field evolved, with the emergence of several sub-fields, like:

* Quantum advantages for quantum machines
* Quantum advantage for quantum batteries
*  Work extraction from quantum systems and ergotropy

* Thermal devices producing quantum resources (quantum
coherence and entanglement)

* Quantum clocks

* Thermodynamic formalism beyond weak system-bath coupling
* Entropy production and quantum origin of irreversibility
* Autonomous Quantum thermodynamics

* Stochastic Quantum Thermodynamics

* Fluctuation Theorems

* Control of fluctuations

* Shortcut-to-adiabaticity

* Quantum Thermometry

* Thermalization in closed multipartite quantum systems

* Resource Theory

* Quantum Seep Limit

* Thermodynamic Quantum Computing

* Quantum Energetic

* Third law of thermodynamics and Quantum Erasure



II. Current problematics of Quantum Thermodynamics

Current main objectives and aims of quantum Thermodynamics

Concept of Work and Heat at the quantum scale in a general context

Entropy production for general quantum dynamics - quantum origin of irreversibility

Trade-off between performances of quantum operations Versus costs
L—) (fidelity, precision, velocity, robustness) L—) (energetic and

thermodynamic cost)

Energetic cost of information processing and its fundamental limits

Understanding and then controling quantum fluctuations

Quantum Thermodynamics aims to play for Quantum

Technologies the same role as Thermodynamics played

for the industrial revolution: optimize resources at hand
in order to reach the best possible performances




Brief reminder about driven open

quantum systems



Brief reminder about driven open quantum systems

(1) No quantum system can be perfectly i1solated from their surrounding
and environment.

* The interaction with this environment leads to open dynamics

* The environment 1s represented by a bath

* A bath 1s usually a very large system with fixed properties,
and often 1n a thermal state

(1) Interaction with baths can be made on purpose: it 1s the essence of
some operations like quantum reset and devices like quantum heat
engines and quantum refrigerators.

(111) Engineered interactions with baths can generate useful properties
and states (entanglement, quantum coherences, squeezed states, etc)

3 good reasons to study and analyse driven open quantum systems

when the system 1s driven by external
control while interacting with a bath



Brief reminder about driven open quantum systems

¢ Driven systems

Hg(t) = Hy + Vg ()
~

Free Hamiltonian contribution from
of the system external controls

L results from interaction with
classial systems (or large
quantum systems behaving
effectively as classical ones)
(mainly lasers or
radio/microwaves-frequency
electromagnetic pulses)

* The dynamics generated by such time-dependent Hamiltonian is given by the
Dyson serie

L +00 N ' t
Ug(t) — Te_%fo dt'Hg(t') -— Z i (—%) / dtq / dt,. . / dtnTHS(tl)HS(tg). . Hg(tn)
0 0 0

l
0 n.

+00 Z n t i1 tn1
— (——) / dt1/ dtZ---/ dthS(tl)HS(t2)°°°HS(tn)
~\ h 0 0 0



Brief reminder about driven open quantum systems

A. Open dynamics

Hs(t) +Vss(t) + Hp
Y Y

Y
Local Hamiltonian of the system System-bath coupling  Free Hamiltonian
(free Hamiltonian + driving (potentially time- of the bath B
Hamiltonian) dependent)
Tracing out the bath: () : = [ ()] (= taking the partial trace over B)
Reduced dynamics d 7
otthesystems:  Ps(0) = —ps(t) = —=Trp{ [Hs(t) + Vin(t) + Ha, psa(?)] |
— ... lot of work ...
1
=~ [H(t), ps(t)] + Dulps(t)]
\ ) \ )
Y Y

Dissipative part (due to the

Unitary part . : :
yP interaction with the bath)

Observations: ( ) can be different from () (due to the coupling with the bath). However, in

the following, we will consider () = ().

1S a superoperator (an operator acting on operators) and can be time-dependent.
It 1s sometimes called the dissipator or dissipative operator.



Brief reminder about driven open quantum systems

B. General form of the dissipator

1
Dilps(t)] = 3t (Li®ps®)LLE) - 5 {LLLOLL(E), ps(1)})
k Y
o L;(t) : jump operator or Lindblad operator = Li(®Le(t)ps(®) + ps) Ly(#)L(t)

( anti-commutator: {A,B} := AB+BA)

Lv generates quantum jumps

o i(t) : decaying rate or jumping rate
= probability per unit of time to have occurence of a quantum jump ()

= also related to the equilibration timescale since equilibration happens
through sequences of many quantum jumps.

« simple case: () = O for all t and k (=Markovian dynamics, no memory effects)

« Ifthere exists at least one k and t such that () < O : presence of memory effects
(non-Markovian dynamics)



Brief reminder about driven open quantum systems

*» Exemple: two-level system (qubits, spins, atoms, etc)

master ’L 1
equation () = ——[Hy, ps()]+ 7+ (0 ps(t)o - — {00, ps(t)})
(for weak h 2
coupling 1
with the + - (U—Ps(t)0+ — 51040, Ps(t)})
bath) v,
+ = (Usz(t)az — Ps(t))
Hg = h;us o
with (1 0
oy = le)(g o_ = |g)(e 2= \o _1

Yk« Y4+4.Y—57Yz allpositive

Ly, : oy, O_, O,
et s

jump from jump from  not really a jump (but induces
| to| | to] “dephasing” = loss of coherences)



Brief reminder about driven open quantum systems

One can show:

 Population:

. d 1
Pe(t) := —(elps(t)e) = v4py(t) — v-pe(t) = _Tpe(t) T Y+  with Ty := 1
1 Y+ V-

——> pe(t) = e t/T pe(0) — T+ + T+

Y+ T V- Y+ T Y-

j Population decays at a rate /

 Energy decay rate:

Eg(t) := Tr|ps(t)Hs| = hws|pe(t) — 1/2] follows () —> energy decays at arate /

* Decoherence rate:

: ~1
ceo®) 1= (elps(B]g) = e ey (0) wan 1 (2520

——> coherence decays at a rate /

Conclusion: decaying rate, decoherence rate, are determined by ., 4, and




Brief reminder about driven open quantum systems

*¢* Observation:
« Atlong time, we have,

Y+
pe(t = +00) =
j Ti + -
Pg(t = +00) =1 — p,(t = +00) = =
Y+ T V-
Ceg(t = 00) = cge(t =00) =0
* In situations of a thermal bath at temperature -
with a weak system-bath coupling, we have: ’Y__ = e *sTp
_'_
: ——=—Hg T\
« This implies: lim t) = p(Tg) := =€ %75 °
p M ps(t) = ps (Ts) Z )
Y

Conclusion: at long
thermal state times, for weak
at temperature system-bath

> couplings, the system

.. : thermalizes at the
¢ _ ws Jws_ partition function > :
bath’s temperature

.« — ZRBT ZkBT . .
Y/ + € (normalization factor)

: Boltzmann constant

- _/




Brief reminder about driven open quantum systems

C. Thermal state
** Definition

Let’s consider a quantum system of Hamiltonian H

h 1 __1 g
Thermal state at temperature T: 0 (T) — —e kpT

A
with Z :=Tr [e_’%LTH}

Why? « This state reproduces the definition/characteristics of classical thermal state

» This state is the state which maximizes the entropy (von Neumann entropy)
at fixed energy.

Observations: < In terms of the eigenvalues and eigenstates| of H:
pt —1 Z —en/ka‘en <€n‘ and 7 — Z —e,/kyT

. 1 . .
 The quantity : = —1s often used, and called the “inverse temperature”.



Brief reminder about driven open quantum systems

D. Entropy of von Neumann
The von Neumann entropy associated with a density operator 1s

Sw(p) = —Tr(plnp)

It 1s the generalization of the Shanon entropy (information theory) to quantum
states

* For thermal states, the von Neumann entropy is equal to the thermodynamic
entropy for classical systems:

S[p™T)) == pulnp, with p = Z leen/ksT 419 7 — Y emen/lt
* Logarithm of an operator:

For an operator , ( ) is defined as the operator suchthat [ ( )] =

. p= Zml%)(%\ with (;]¥;) = di; = Sn(p) = — Zpi In p;

* Important property: the von Neumann entropy is invariant by unitary transformation

SN (UpU T) = Syn(p) for all unitary transformations U.



Brief reminder about driven open quantum systems

E. Steady state

 For an open dynamics of the form

ps(t) = HS, ps(t ’)’k LkPS {LTLk, ps(t )})

\\\//

T1rne independent

A steady state of the dynamics generated by 1is a state such that:

£ [ 88] L O If the system reaches at some 1nstant of time t,
P o ; S will remain in this state at any later time

* In simple situations, 1s unique and 1s the thermal state at the bath’s temperature T,

()

— This 1s the case in at least 2 situations:

- when the coupling with the bath is weak and in the absence of memory effects

- when: [LkaHS] = wy Ly, and ’Yk/’Yk' — e—(wk—wkf)/kBT Vk, k’

« If the generator 1s time-dependent, one can define instantaneous fixed states as the state
()suchthat [ ()] =0



Brief reminder about driven open quantum systems

Recap: In the following, we will consider quantum systems in diverse situations:

* A quantum system subject to external drive or control. This corresponds to a unitary
dynamics described by a time-dependent Hamiltonian:

ps(t) = — % ps(t), Hs(t)] with () typically of the form Hg(t) = Hy + Vi (t)

* A quantum system weakly interacting with a thermal bath. This corresponds to a non-

unitary dynamics described by a GKSL master equation with time-independent
Hamuiltonian:

ps(t) = —+[Hs, ps(0)] + 3 76 (Lips(t)L] — 5 {L{L,ps(1)})

time-independent _k _

action of the bath

* A quantum system simultaneously subject to external drive and interacting with a bath.
This corresponds to the most general dynamics, which 1s a non-unitary dynamics described
by a GKLS master equation with time-dependent Hamiltonian

ps(t) =~ 1) CIESIICICO )ps(OLLE) ~ UL, ps(0)})

= _E[HO + Ve (), p (t)] + D:lps(?)] with Hg(t) = Hy + Vi (2)
action of the drive action'of the bath

Observations: such situations present all required ingredients for thermodynamics:
« External drive/control = mechanical control in classical thermodynamics
* Interaction with thermal bath = interaction with thermal bath in classical thermodynamics



I1I. Concepts of work and heat



III. Concepts of work and heat

A. Classical concept of work:

« work = energy “without uncertainty” = “without noise” = “mechanical energy”

Examples of work exchange:

Lifting

Definition of work W =F.Ar Classical Mechanics

Displacement of a piston

Resulting force applied on the system &J k — Displacement of objects/
ensemble of particles

B. Classical concept of heat:

* Energy exchange associated with molecular excitation: average over all molecules of the
random and disordered movements of molecules ensemble/object/gas

* Energy exchange associated with change of
entropy

* Disordered increase of kinetic energy: F AT‘ =0



III. Concepts of work and heat

——> Extension to classical stochastic thermodynamics K- Sekimoto: Stochastic
Energetics, Springer (2010)

Context:

* Single particle 1n contact with a thermal bath (= ensemble of other particules globally

in a thermal state)
——> canonical coordinates: (q,p)

* Deterministic part of the dynamics 1s described by the classical Hamiltonian

(Hamilton’s equation of motion) | .
. parametrizes the external forces acting on the

—> (.) system (external field and or confining potentials)

* Non-deterministic (or stochastic) part of the dynamics is induced by the interaction
with the bath — described by stochastic terms “a la Langevin”

 Infinitesimal energy variation:

dH)\(p,q) _ ; OHA(pa) ; OH)(p,q) 5 0H ) (p, q)
dt O | 0q | Op
Energy change due Energy change due to interaction
to external forces with thermal bath (reduces to zero 1if
\U/ no bath interaction)

- !
4 @



III. Concepts of work and heat

C. Work for quantum systems

We consider a quantum system S described by a density operator ( ) and Hamiltonian (),
and weakly interacting with a thermal bath. The resulsting dynamics is assumed to be of the
form:

d 2

—ps(t) = Hs(t), ps(t)] + Dilps(t)] describes the action of
at h S 7 thebath

Work for quantum systems is:
* Exchange of energy “without uncertainty” = “without noise”
—> Exchange of energy without change of entropy

* Change of energy due to external controls

e Substituting (, )by [ () ()] in the classical stochastic definition of work,

one gefts: . .
WS (t) pp— TI' [pS (t) HS (t)] Infinitesimal work exchange

variation of the Hamiltonian due to
N . .
> variation of external parameters

—

t
—> WS(t) — / dUTr [pS(u)HS(u)] Finite work exchange
0

——> Observation: we recover the proterty that work exchange is induced by external control or
mechanical action, because in Quantum Mechanics time-dependent Hamiltonians are
consequences of external controls (like systems driven by laser, magnetic fileds, etc.)



III. Concepts of work and heat

* Example: spin-1/2

Elementary particles have intrinsic angular momentum, —> g

which gives rise to intrinsic magnetic moment through the gyromagnetic factor

C g

7S

~

—> H — —f)/S B (quantized classical potential energy

|
I
\

[ hw
By =="
_’
——> 2 quantized energy levels < with w = ,Y| B| —_— hw
hw
E - -
L 2
According to the definition of
—_— the previous slide, work Applying work = Applying work = increasing ( = 0) or
exchanges correspond to varying the decreasing (< 0) the energy levels
variation of Hamiltonian magentic field

intensity

—> W(t) = —Tr |:p5(t)§. é(t)] and W (t) = —'y/Ot duTr [pg(u)§ I_B,(fu,)}



III. Concepts of work and heat

* Example: quantum harmonic oscillator

trapped ion E

B > N obF e/ PO
LY /
L N, | E Pi(y)
i \\ //,
0] ;
e b v - El] < PO(X)
I ha/?2 . ) , X
2 >

1
Quantum particle in a harmonic potential V = Ekfgz

N

2 52 . 1
——> Hamiltonian £ — P N lsz _ P n lmszz Quantized energy levels: E, = hw (n + _)
2m = 2 2m = 2 2
w=1/k/m
According to the definition of
> previous slides, work Applying work = varying the
exchanges correspond to trap stiffness k

variation of Hamiltonian

—> ) = %ic(t)Tr ps(t)X?] and W(r) = % /0 ' du f(w) Tr ps(u) X7



III. Concepts of work and heat

D. Heat for quantum systems:

e Variation of energy associated with changes of entropy

* Change of energy due to interaction with the thermal bath

e Substituting (, )by [ () ()] in the classical stochastic definition of heat,

one gefts:
—_— Q g (t) — TI- [p’S (t) HS (t)] Infinitesimal heat exchange

(for weak coupling variation of the state of the
with the bath) system due to interaction
with the thermal bath

t
QS( ) / duTr [ps( )HS(’U,)] Finite heat exchange
0

()

“* Exercise: using the dynamics pg4(t) = -

[Hs(t), ps(t)] + Dips(t)] show that §(r) = Te[Di[ps (1) Hs(1)]

\ J
Y

changes of energy induced by the bath

—— Observation: we recover the analogy with classical heat exchanges, where heat
exchanges are induced by energy exchanges with thermal baths.



III. Concepts of work and heat

E. Total energy and first law for quantum systems

» Total energy of S:  Es(t) := Tr[ps(t)Hs(t)]

Qs(t) Ws(t)
Finite variation : AES — /(; d’U,TI‘[[)S(u)HS(U)] —+ ; d’LLTI‘[pS("LL)Hs(u)]
Es(t) Wis(t)

—> | Fisrt Law of Thermodynamics!

* Important to keep in mind:

<+ Dynamics with no external drive: Wg(t) =0

¢ Dynamics with no interaction with the bath: Qg(t) =0

 General dynamics: Wg(t) 20 and Qg(t) # 0



III. Concepts of work and heat

F. Limitations

 Non-thermal bath and/or finite bath

** Why does the energy provided by the bath should always be
heat?

AEp

Not heat! J
/ Ex: a mode in a large coherent
_, Heat!

7 state realize a -pulse

Observation: the quantum system of interest is sometimes called S, and sometimes A. This is just a small confusion in the notation which has to be ignored: =



Side notes

In this side note, we show that an harmonic oscillator B in a large coherent state tends to induce, on a short
timescale, a time-dependent componant in the Hamiltonian of the qubit A.

A

General situation: H up=H;s+ X, Xg+ Hp

(valid for any system A and B)

pap = —t|Hap, pap(t)] (R=1)

If we neglect the correlations between A and B:

pap(t) =~ Trp{pan(t)} @ Tra{pan(t)} = pa(t) ® p5(t)

Trp{[X4® X, pa(t) ® pp(t)|} = Trp{ X4 ® Xppa(t) ® pp(t)} — Trp{pa(t) ® pp(t) X4 ® X3}
= Xapa(t)Trp{Xppp(t)} — pa(t)XaTrp{pp(t)Xs}
= [CB(t)XA, PA (t)] with z(t) = Trp{pp(t)Xp} = Trp{Xpps(t)}



Side notes (end)

Conlcusion:
pa(t) = —i[Ha + gz(t) X a,pa(t)

neglecting correlations between A and B

— We obtain that neglecting the correlations between A and B results in: (1) a unitary dynamics for A; (i1) an
effective Hamiltonian with a time-dependent component x(t) determined by the time evolution of B.

— However, one has to be careful: we made a big approximation, we neglected the correlations between S and
B. This is a resonable approximation only on short timescales ( ~1) and when the state of B is very
energetic and not affected by the influence of B. If one 1s interested in long time behavior, one has to consider
correlations between A and B including for instance higher order contributions.

For the harmonic oscillator:

z(t) = Trp{pp(t) X5} = Trp{ps(t)(a’ + a)}

. —iHgt iH=t (we approximate the time evolution of B by its
PB (t) =€ " pB (O) e’ free evolution. This is valid only on a short
timescale, for 1)

PB(O) = |a0><0¢0‘ coherent state

z(t) = afe™s + age "



III. Concepts of work and heat

* Strong coupling
*+ How to take into account the coupling energy?

AE/‘AB — AEA + Alyinterax:tiom + Al?B

~
= Trlpap(t)Vas(t)] — Tr[pap(0)Vap(0)]

Work or Heat?

Does 1t contribute to
the energy A or B?



IV. Opening: state of current research

A. Strong Coupling (M. Esposito, K. Lindenberg, C. Van den Broeck, Entropy production as
correlation between system and reservoir, New J Phys 12, 013013 (2010))

gouEE Emm Emm Em oy,
A
N e e e o= ==

Isolated, global unitary evolution

Hypothesis: - B 1s initially in a thermal state
- A and B are 1nitially uncorrelated

—> Heat: Q A (t) — —AF B —> Allenergy exchanged with the bath 1s heat

——> Justification through entropy production:

a(t) = A4 — Q) 2 0 oty e

Variation of von
Neumann entropy of A
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t
——> For the work, still W 4 (t) — / duTr [pA(U)HA(u)]
0

——> Then, we can show

Wa(t)+ Qa(t) = AEA + AEyy

—

AE 4 := Tr[pa(t)Ha(t)] — Tr[pa(0)H A(0)] AEiy := Tr|pap(t)Vap| — Tr|pap(0)Vas]

Conclusion: the interaction energy is included in the energy decomposition of
heat and work
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B. AUtOIl()mOU,S therm() dynamics (C. Elouard, C. Lombard Latune: Extending the Laws of

Thermodynamics for Arbitrary Autonomous Quantum Systems. PRX
Quantum 4, 020309 (2023))

- o o S S S B S B S B EEE G B B B G B M S e e o

Isolated, global unitary evolution

Hypothesis: A and B are initially uncorrelated

* The energy of A (B) is divided into:

a thermal energy (noisy energy) and a non-thermal energy (“unitary” energy)
—~ = -

EY E4

. = — : heat provided by A . = — : heat provided by B

. = — : work provided by A = — : work provided by B
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. = — : heat provided by A« = - : heat provided by B

o = - : work provided by A = - : work provided by B

,
EA:ASA_/BBQBZO
kEBZAS’B—/BAC?AZO
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A. Colla, H.-P. Breuer: Open-system approach to nonequilibrium

C, Mlnlmal diSSipatOI' framCWOI'k quantum thermodynamics at arbitrary coupling. Phys. Rev. A 105,

052216 (2022)
Arbitrary quantum system S coupled to a bath B
®—) HSB = Hs+ Vsp+ Hp psB(0) = ps(0) ® pp(0)
_/
Y
Hypothesis: Tracing out the bath
- S and B are initially uncorrelated
- B is an infinite bath ps(t) — AtPS(O) CPTP map

Et — AtAt_ 1 l If the inverse exists

pS(t) — f,tps(t) Master Equation

J(requirement of Hermiticity and trace preservation)
Time

ps(t) = — [ _|_ Z'Yk [ ( )LT( ) _ %{LL(t)Lk(t), PS(t)} convolutionless

master equation

Y J
Y

Important obs: () & contains Lamb shift, energy renormalization, etc...

k > operator associated with the physical energy of S
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(Qs(t) == Tr[ps(t) Ks(t)

The plan: = 1T | .
e plan —_— Eg(t) =T [pS(t)KS(t)] —> '<k WS(t) . TI'[pS(t)KS(t)]

¢ Problem: the form of the master equation is not unique

Lk(t) — Lk(t) — Oék(t)l[

Yi(t)
21

Ks(t) — Ks(t)+ Y

()LL) — ai () La(®) | + BA)T
k

¢ Solution: minimal dissipator

(L1, La) = (Y| L1 |9} (0] | L2 o) (0] ] [¥)

——> Unique (mathematical) way to define ()

(Obs: the dissipator of minimal norm is composed of traceless jump operators)
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——> Then, “usual” defintions (with the dissipator of minimal norm and associated unitary operator)

| Es(t) := Trps(t)Ks(t)
3 Qs(t) = Tr[ps(t)Ks(t)]
| Ws(t) = Trlps (1) Ks(t)]
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. . . P. Strasberg, Phys. Rev. Lett. 123, 180604 (2019)
D. Hamiltonian of Mean Force Gibbs 4. Rivas,. Phys. Rev. Lett. 124, 160601 (2020)

Hypothesis: - S and B are initially uncorrelated
B - B is an infinite bath

Hsp=Hgs+ Vsp+ Hp

—> Mean force Gibbs state:

(takes into account

p]‘s\"lFG — TrB [ IBHSB /Tr 9B [e _IBHSBH contributions from )

—> Hamiltonian of Mean force:

Z 3B
HMFG _ B 11n( o pg/[FG)

—> Thermodynamic framework based on

Energy of S: Eg(t) = Trg[ps(t)H ")
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E. Additional frameworks

* Separated role of coherences

* B. d. L. Bernardo: Unraveling the role of coherence in the first law of quantum thermodynamics. Phys. Rev. E
102, 062152 (2020)

% A. Vallejo, A. Romanelli, V. Feldman, R. Donangelo: Evolution of expected values in open quantum systems.
Phys. Rev. A 111, 032201 (2025)

* Work operator

s A. E. Allahverdyan, Th. M. Nieuwenhuizen: Fluctuations of work from quantum subensembles: The case against
quantum work-fluctuation theorems. Phys. Rev. E 71, 066102 (2005)

s T. A. B. Pinto Silva, D. Gelbwaser-Klimovsky: Quantum work: Reconciling quantum mechanics and
thermodynamics. Phys. Rev. Res. 6, 2 (2024)

* Question and debate around work fluctuation (e mroe details in lecture 1r1)

s M. Perarnau-Llobet, E. Baumer, K. V. Hovhannisyan, M. Huber, A. Acin: No-Go Theorem for the Characterization
of Work Fluctuations in Coherent Quantum Systems. Phys. Rev. Lett. 118, 070601 (2017)

% T. A. B. Pinto Silva, D. Gelbwaser-Klimovsky: Quantum work: Reconciling quantum mechanics and
thermodynamics. Phys. Rev. Res. 6, 2 (2024)






Recap on heat and work

* Heat for quantum systems is intimately related to interaction with external degrees of
freedom and change of local entropy

*  Work for quantum systems is intimately related to classical control and unitary
transformation (coherent energy exchange)

» For weak coupling, with infinite thermal bath, all definitions converge
to the one given at the beginning of the lecture:

Qs(t) = / duTr|ps(u)Hs(u)
Ws(t) = /0 duTr(ps (w) Hs ()]

* For strong coupling: contributions from interaction energy have to enter the game
— how it 1s taken 1nto account depends on the framework

¢ Esposito, Lindenberg, &  Colla and Breuer % Mean force
Van den Broeck

Hamiltonian

» For finite bath, the evolution of the state of the bath has to be taken into account

/

¢ Esposito, Lindenberg, s Elouard and Latune
Van den Broeck

*  Which framework 1s the more accurate? — Still debated, most probably depends on the context



Recap on the open quantum system part

* Open quantum dynamics are described in term of “dissipators” or “dissipative
operators’,

* Dissipative operators contains jump operators  promoting quantum jumps at rate
determined by the coefficients , the jumping rates.

« Atlong time, the succession of quantum jumps leads to decoherence and energy decay,
and eventually to thermalization at the bath’s temperature.

* Notions of information ( ), work (W), and heat (Q) can be defined in the quantum
regime. From the fundamental point of view, they are central to analyse the intimate
relation between energy and information in the quantum regime. From a practical
perspective, they are crucial to analyse, understand, and enhance the performances of
quantum operations.



