

33rd Chris Engelbrecht Summer School April 2025

Introduction to Quantum Thermodynamics

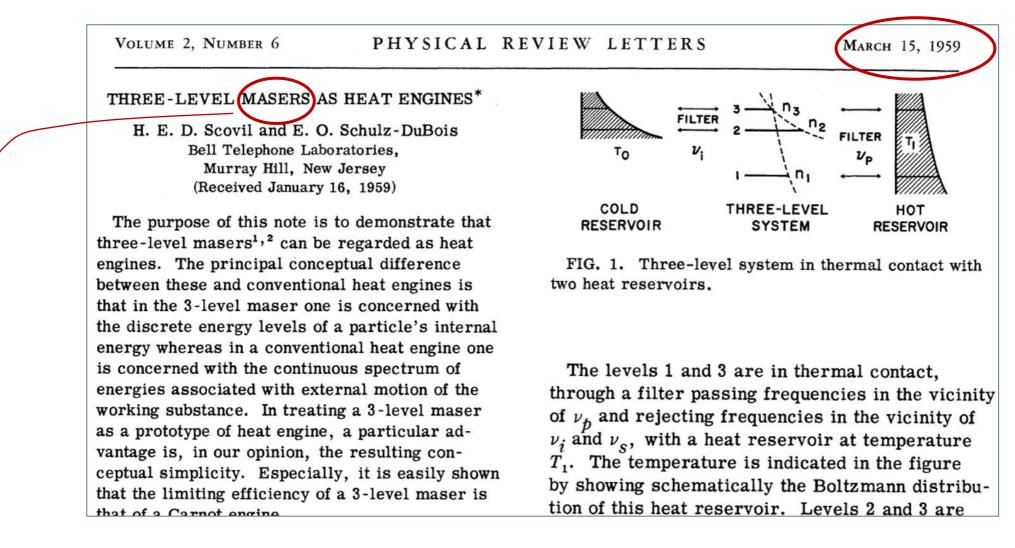
Lecture 1

Camille L Latune camille.lombard-latune@u-bourgogne.fr

Lecture I: Thermodynamic framework in the quantum regime

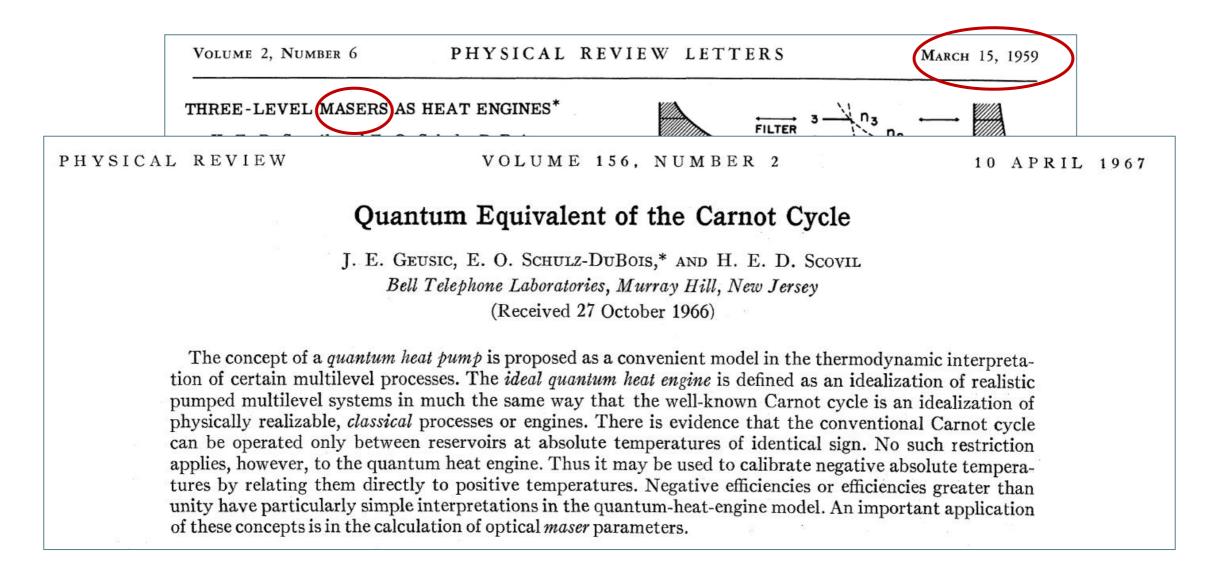
- I. Brief historical perspective
- II. Current problematics of Quantum Thermodynamics
- III. Work and Heat
 - Classical systems
 - Extension to stochastic classical thermodynamics
 - Standard definitions of work and heat for quantum systems.
 - Some limitations
- IV. Opening: brief overview of current state of the research

- First research articles on what will become Quantum Thermodynamics appeared from the years 1960 to 1980.
 - Papers mainly discussing the extension of thermal machines and Carnot cycle to quantum systems:

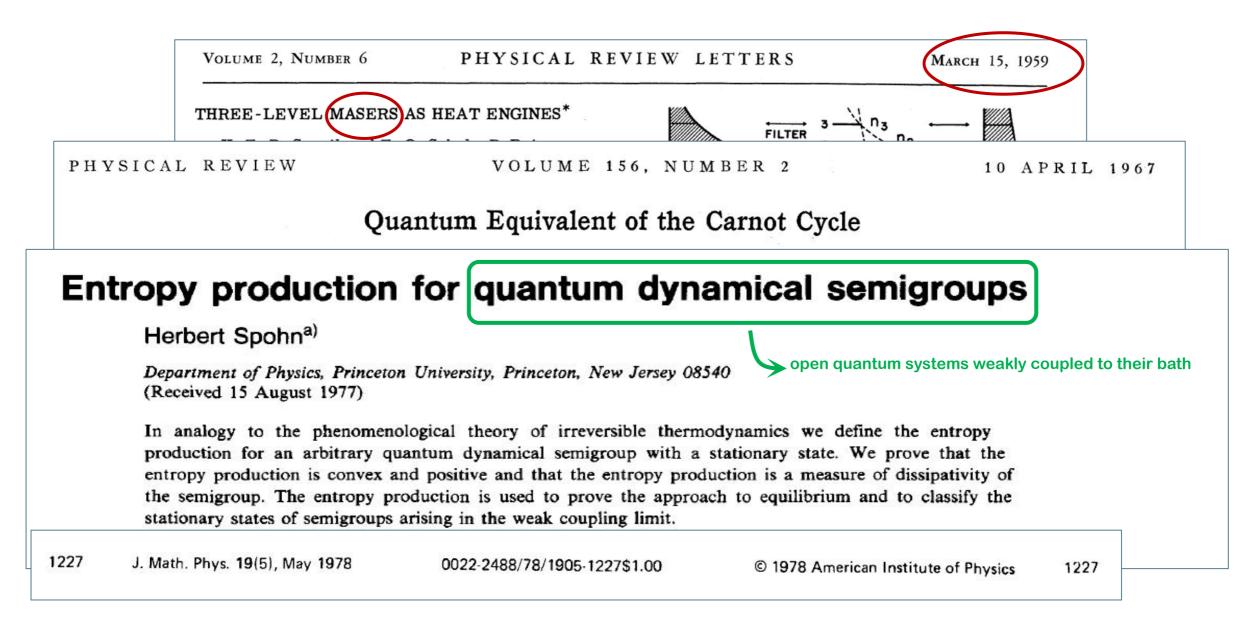


"Laser" but elecromagnetic in the range of the microwave (wavelength between 1mm and 1m)

- First research articles on what will become Quantum Thermodynamics appeared from the years 1960 to 1980.
 - Papers mainly discussing the extension of thermal machines and Carnot cycle to quantum systems:



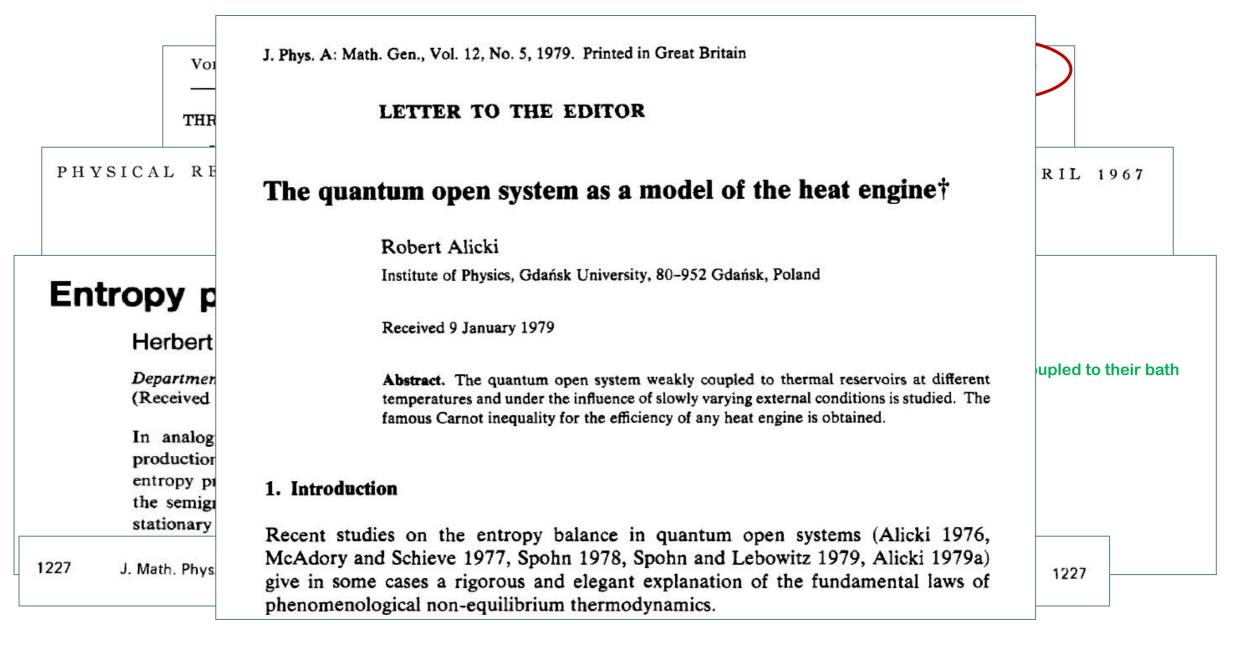
- First research articles on what will become Quantum Thermodynamics appeared from the years 1960 to 1980.
 - Papers mainly discussing the extension of thermal machines and Carnot cycle to quantum systems:



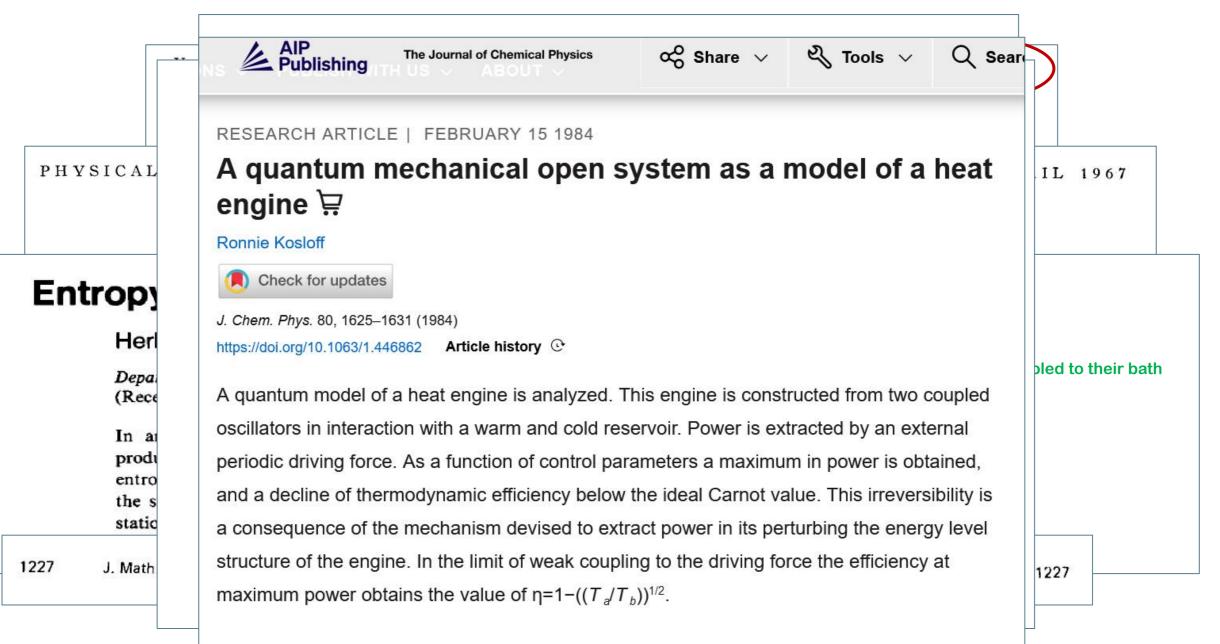
- First research articles on what will become Quantum Thermodynamics appeared from the years 1960 to 1980.
 - Papers mainly discussing the extension of thermal machines and Carnot cycle to quantum systems, and later questions of irreversibility and entropy production:

VOLUME 2, NU	JMBER 6	PHYSICAL REVIEW LETTERS	March 15, 1959
THREE-LEVE PHYSICAL REVIEV		Offprints from For Ilya Prigogine—Advances in Chemical Physics, Volume 38 Edited by Dr. Stuart A. Rice Copyright © 1978 by John Wiley & Sons, Inc.	10 APRIL 1967
Entropy prod Herbert Spoh	QUANT	ERSIBLE THERMODYNAMICS FOR TUM SYSTEMS WEAKLY COUPLED TO THERMAL RESERVOIRS	ups
Department of Ph (Received 15 Aug		HERBERT SPOHN*	s weakly coupled to their bath
In analogy to the production for an entropy production the semigroup. The stationary states of		Belfer Graduate School of Science Yeshiva University New York, N.Y. JOEL L. LEBOWITZ [†]	opy at the vity of ify the
1227 J. Math. Phys. 19(5), N		Service de Physique Théorique CEN Saclay Gif-sur-Yvette, France	Physics 1227

- First research articles on what will become Quantum Thermodynamics appeared from the years 1960 to 1980.
 - → Papers mainly discussing the extension of thermal machines and Carnot cycle to quantum systems, and later questions of irreversibility and entropy production:



- First research articles on what will become Quantum Thermodynamics appeared from the years 1960 to 1980.
 - Papers mainly discussing the extension of thermal machines and Carnot cycle to quantum systems, and later questions of irreversibility and entropy production:



- First research articles on what will become Quantum Thermodynamics appeared from the years 1960 to 1980.
 - Papers mainly discussing the extension of thermal machines and Carnot cycle to quantum systems, and later questions of irreversibility and entropy production
 - These pioneering papers provided the initial questions and research lines of quantum thermodynamics, which really started around 2000.

II. Current problematics of Quantum Thermodynamics

- Nowadays, the field evolved, with the emergence of several sub-fields, like:
 - Quantum advantages for quantum machines
 - Quantum advantage for quantum batteries
 - Work extraction from quantum systems and ergotropy
 - Thermal devices producing quantum resources (quantum coherence and entanglement)
 - Quantum clocks
 - Thermodynamic formalism beyond weak system-bath coupling
 - Entropy production and quantum origin of irreversibility
 - Autonomous Quantum thermodynamics
 - Stochastic Quantum Thermodynamics
 - Fluctuation Theorems
 - Control of fluctuations
 - Shortcut-to-adiabaticity
 - Quantum Thermometry
 - Thermalization in closed multipartite quantum systems
 - Resource Theory
 - Quantum Seep Limit
 - Thermodynamic Quantum Computing
 - Quantum Energetic
 - Third law of thermodynamics and Quantum Erasure

II. Current problematics of Quantum Thermodynamics

Current main objectives and aims of quantum Thermodynamics

- Concept of Work and Heat at the quantum scale in a general context
- Entropy production for general quantum dynamics quantum origin of irreversibility
- Trade-off between performances of quantum operations Versus costs

 (energetic and thermodynamic cost)
 (energetic and thermodynamic cost)
- Energetic cost of information processing and its fundamental limits
- Understanding and then controling quantum fluctuations

Quantum Thermodynamics aims to play for Quantum Technologies the same role as Thermodynamics played for the industrial revolution: optimize resources at hand in order to reach the best possible performances

(i) No quantum system can be perfectly isolated from their surrounding and environment.

- The interaction with this environment leads to open dynamics
- The environment is represented by a *bath*
- A bath is usually a very large system with fixed properties, and often in a thermal state

(ii) Interaction with baths can be made on purpose: it is the essence of some operations like **quantum reset** and devices like **quantum heat engines** and **quantum refrigerators**.

(iii) Engineered interactions with baths can generate useful properties and states (entanglement, quantum coherences, squeezed states, etc)

3 good reasons to study and analyse *driven open quantum systems*

when the system is driven by external control while interacting with a bath

Driven systems

$$H_{S}(t) = H_{0} + V_{dr}(t)$$

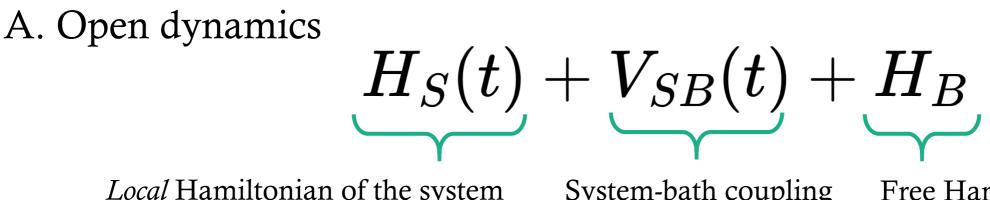
Free Hamiltonian contribu

of the system

contribution from external controls

- results from interaction with classial systems (or large quantum systems behaving effectively as classical ones) (mainly lasers or radio/microwaves-frequency electromagnetic pulses)
- The dynamics generated by such time-dependent Hamiltonian is given by the Dyson serie

$$egin{aligned} U_S(t) &= \mathcal{T} e^{-rac{i}{\hbar}\int_0^t dt' H_S(t')} := \sum_{n=0}^{+\infty} rac{1}{n!} igg(-rac{i}{\hbar}igg)^n \int_0^t dt_1 \int_0^t dt_2 \dots \int_0^t dt_n \mathcal{T} H_S(t_1) H_S(t_2) \dots H_S(t_n) \ &= \sum_{n=0}^{+\infty} igg(-rac{i}{\hbar}igg)^n \int_0^t dt_1 \int_0^{t_1} dt_2 \dots \int_0^{t_{n-1}} dt_n H_S(t_1) H_S(t_2) \dots H_S(t_n) \end{aligned}$$



Local Hamiltonian of the system (free Hamiltonian + driving Hamiltonian) System-bath coupling (potentially timedependent) Free Hamiltonian of the bath B

 \rightarrow Tracing out the bath: $\rho_S(t) := Tr_B[\rho_{SB}(t)]$ (= taking the partial trace over B)

Observations:

- H(t) can be different from $H_S(t)$ (due to the coupling with the bath). However, in the following, we will consider $H(t) = H_S(t)$.
 - \mathcal{D}_t is a *superoperator* (an operator acting on operators) and can be time-dependent. It is sometimes called the *dissipator* or *dissipative operator*.

B. General form of the dissipator

$$\mathcal{D}_t[
ho_S(t)] = \sum_k \gamma_k(t) \Big(L_k(t)
ho_S(t) L_k^{\dagger}(t) - rac{1}{2} \{ L_k^{\dagger}(t) L_k(t),
ho_S(t) \} \Big)$$

• $L_k(t)$: jump operator or Lindblad operator \int_{σ} generates quantum jumps $=L_k^{\dagger}(t)L_k(t)
ho_S(t)+
ho_S(t)L_k^{\dagger}(t)L_k(t)$ (anti-commutator: {A,B} := AB+BA)

• $\gamma_k(t)$: decaying rate or jumping rate

= probability per unit of time to have occurence of a *quantum jump* $L_k(t)$

= also related to the *equilibration timescale* since equilibration happens through sequences of many quantum jumps.

- simple case: $\gamma_k(t) \ge 0$ for all t and k (=Markovian dynamics, no memory effects)
- If there exists at least one k and t such that γ_k(t) ≤ 0 : presence of memory effects (non-Markovian dynamics)

Exemple: two-level system (qubits, spins, atoms, etc)

master equation (for weak coupling with the bath) $\dot{\rho}_{S}(t) = -\frac{i}{\hbar} [H_{S}, \rho_{S}(t)] + \gamma_{+} \left(\sigma_{+} \rho_{S}(t) \sigma_{-} - \frac{1}{2} \{ \sigma_{-} \sigma_{+}, \rho_{S}(t) \} \right) + \gamma_{-} \left(\sigma_{-} \rho_{S}(t) \sigma_{+} - \frac{1}{2} \{ \sigma_{+} \sigma_{-}, \rho_{S}(t) \} \right) + \frac{\gamma_{z}}{2} \left(\sigma_{z} \rho_{S}(t) \sigma_{z} - \rho_{S}(t) \right)$

$$egin{aligned} H_S &= rac{\hbar \omega_s}{2} \sigma_z \ \sigma_+ &:= |e
angle \langle g | & \sigma_- := |g
angle \langle e | & \sigma_z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \end{aligned}$$

$$ightarrow \gamma_k: \gamma_+, \gamma_-, \gamma_z$$
 all positive

with

 $\rightarrow L_k: \qquad \sigma_+, \qquad \sigma_-, \qquad \sigma_z \\ jump from \\ |g\rangle \text{ to } |e\rangle \qquad jump from \\ |e\rangle \text{ to } |g\rangle \qquad \text{not really a jump (but induces$ $`dephasing'' = loss of coherences)}$

One can show:

• **Population:**

$$\dot{p}_e(t):=rac{d}{dt}\langle e|
ho_S(t)|e
angle=\gamma_+p_g(t)-\gamma_-p_e(t)=-rac{1}{T_1}p_e(t)+\gamma_+\quad ext{with}\quad T_1:=rac{1}{\gamma_++\gamma_-}$$

$$\implies p_e(t) = e^{-t/T_1} \left[p_e(0) - rac{\gamma_+}{\gamma_+ + \gamma_-}
ight] + rac{\gamma_+}{\gamma_+ + \gamma_-}$$

$$\implies Population p_1 decays at a rate 1/T_1$$

• Energy decay rate:

 $E_S(t) := \operatorname{Tr}[
ho_S(t)H_S] = \hbar \omega_s[p_e(t) - 1/2] \hspace{0.2cm} ext{follows} \hspace{0.2cm} p_e(t) \Longrightarrow \hspace{0.2cm} ext{energy decays at a rate 1/T_1}$

• Decoherence rate:

$$c_{eg}(t):=\langle e|
ho_S(t)|g
angle=e^{-i\omega_s t}e^{-t/T_2}c_{eg}(0) \hspace{0.5cm} ext{with}\hspace{0.5cm} extstyle T_2:=\left(rac{\gamma_++\gamma_-}{2}+\gamma_z
ight)^{-1}$$

 \implies coherence decays at a rate $1/T_2$

<u>Conclusion</u>: decaying rate, decoherence rate, are determined by γ_+ , γ_+ , and γ_z

✤ <u>Observation</u>:

• At long time, we have,

$$egin{aligned} p_e(t=+\infty) &= rac{\gamma_+}{\gamma_++\gamma_-} \ p_g(t=+\infty) &= 1-p_e(t=+\infty) = rac{\gamma_-}{\gamma_++\gamma_-} \ c_{eg}(t=\infty) &= c_{ge}(t=\infty) = 0 \end{aligned}$$

• In situations of a thermal bath at temperature
$$T_B$$
 with a weak system-bath coupling, we have: $\frac{\gamma_-}{\gamma_+} = e^{\frac{\hbar\omega_s}{k_B T_B}}$

- This implies:
$$\lim_{t
ightarrow+\infty}
ho_S(t)=
ho_S^{ ext{th}}(T_B):=rac{1}{Z}e^{-rac{1}{2}}$$

thermal state

at temperature T_B

 $\frac{1}{k_B T_B} H_S$

with
$$\begin{cases} Z := e^{-\frac{\hbar\omega_s}{2k_BT}} + e^{\frac{\hbar\omega_s}{2k_BT}} & \text{partition function} \\ k_B : \text{Boltzmann constant} \end{cases}$$

⇒ Conclusion: at long times, for weak system-bath couplings, the system S thermalizes at the bath's temperature T_B

- C. Thermal state
- Definition

Let's consider a quantum system of Hamiltonian H

Thermal state at temperature T:

$$egin{aligned} &
ho^{ ext{th}}(T):=rac{1}{Z}e^{-rac{1}{k_BT}H}\ & ext{with} \quad Z:= ext{Tr}\left[e^{-rac{1}{k_bT}H}
ight] \end{aligned}$$

Why? • This state reproduces the definition/characteristics of classical thermal state

- This state is the state which maximizes the entropy (von Neumann entropy) at fixed energy.
- Observations: In terms of the eigenvalues e_n and eigenstates $|e_n\rangle$ of H:

$$ho^{ ext{th}}(T) = Z^{-1}\sum_n e^{-e_n/k_bT} |e_n
angle \langle e_n| \quad ext{and} \quad Z = \sum_n e^{-e_n/k_bT}$$

• The quantity $\beta := \frac{1}{k_B T}$ is often used, and called the "inverse temperature".

D. Entropy of von Neumann

The **von Neumann entropy** associated with a density operator ρ is

$$S_{
m vN}(
ho) = -{
m Tr}(
ho\ln
ho)$$

- It is the generalization of the **Shanon entropy** (information theory) to quantum states
- For thermal states, the von Neumann entropy is equal to the thermodynamic entropy for classical systems:

$$S_{ ext{vN}}[
ho^{ ext{th}}(T)] = -\sum_n p_n \ln p_n \quad ext{with} \quad p_n = Z^{-1} e^{-e_n/k_B T} ext{ and } \ Z = \sum_n e^{-e_n/k_b T}$$

• Logarithm of an operator:

For an operator A, ln(A) is defined as the operator such that exp[ln(A)] = A

$$\bullet \quad \rho = \sum_i p_i |\psi_i\rangle \langle \psi_i| ~~ {\rm with} ~~ \langle \psi_i |\psi_j\rangle = \delta_{i,j} ~\Rightarrow S_{\rm vN}(\rho) = -\sum_i p_i \ln p_i$$

• Important property: the von Neumann entropy is invariant by unitary transformation $S_{
m vN}(U
ho U^{\dagger}) = S_{
m vN}(
ho)$ for all unitary transformations U.

E. Steady state

• For an open dynamics of the form

$$\dot{
ho}_{S}(t) = -rac{i}{\hbar}[H_{S},
ho_{S}(t)] + \sum_{k} \gamma_{k} \Big(L_{k}
ho_{S}(t)L_{k}^{\dagger} - rac{1}{2} \{L_{k}^{\dagger}L_{k},
ho_{S}(t)\} \Big)$$

 $:= \mathcal{L}[
ho_{S}(t)]$ Time-independent

A steady state of the dynamics generated by \mathcal{L} is a state ρ^{ss} such that:

 $\mathcal{L}[\rho^{ss}] = 0 \implies \stackrel{\text{If the system reaches } \rho^{ss} \text{ at some instant of time t,}}{\text{S will remain in this state at any later time}}$

• In simple situations, ρ^{ss} is unique and is the **thermal state** at the **bath's temperature T**, $\rho^{th}(T)$

 \rightarrow This is the case in at least 2 situations:

- when the coupling with the bath is weak and in the absence of memory effects

- when:
$$[L_k, H_S] = \omega_k L_k$$
 and $\gamma_k / \gamma_{k'} = e^{-(\omega_k - \omega_{k'})/k_B T}$ $\forall k, k'$

• If the generator \mathcal{L}_t is **time-dependent**, one can define **instantaneous fixed states** as the state $\rho^{ss}(t)$ such that $\mathcal{L}_t[\rho^{ss}(t)] = 0$

-> Recap: In the following, we will consider quantum systems in diverse situations:

• A quantum system subject to external drive or control. This corresponds to a **unitary** dynamics described by a time-dependent Hamiltonian:

$$\dot{
ho}_S(t) = -rac{i}{\hbar} [
ho_S(t), H_S(t)]$$
 with $H_S(t)$ typically of the form $H_S(t) = H_0 + V_{
m dr}(t)$

• A quantum system **weakly** interacting with a thermal bath. This corresponds to a nonunitary dynamics described by a GKSL master equation with time-independent Hamiltonian:

$$\dot{\rho}_{S}(t) = -\frac{\imath}{\hbar} \underbrace{\left[H_{S}, \rho_{S}(t) \right]}_{\text{time-independent}} + \underbrace{\sum_{k} \gamma_{k} \left(L_{k} \rho_{S}(t) L_{k}^{\dagger} - \frac{1}{2} \left\{ L_{k}^{\dagger} L_{k}, \rho_{S}(t) \right\} \right)}_{\text{action of the bath}}$$

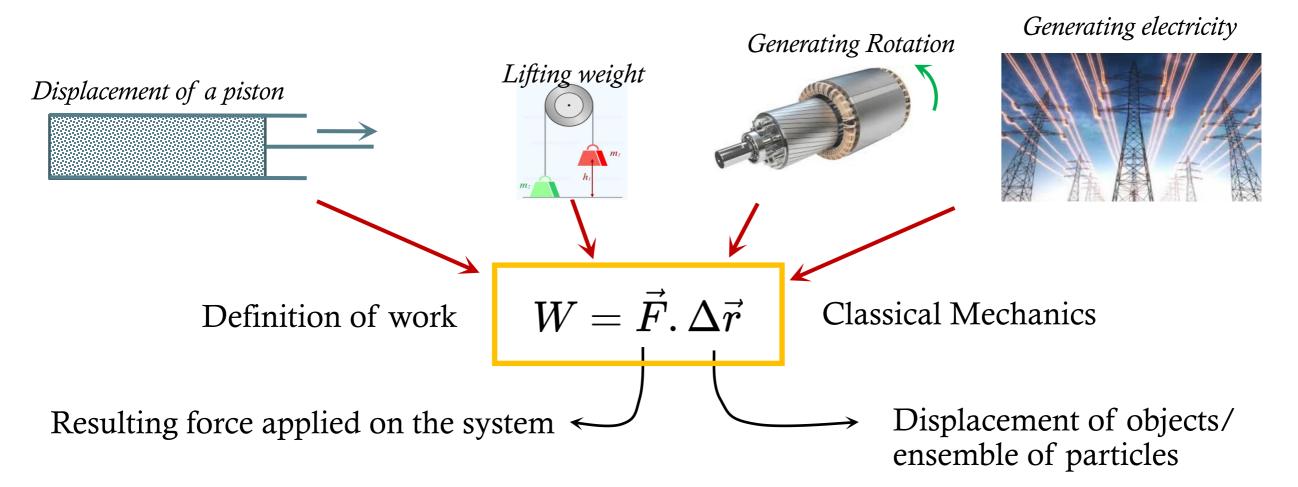
• A quantum system simultaneously subject to external drive and interacting with a bath. This corresponds to the most general dynamics, which is a non-unitary dynamics described by a GKLS master equation with time-dependent Hamiltonian

$$\begin{split} \dot{\rho}_{S}(t) &= -\frac{i}{\hbar} [H_{S}(t), \rho_{S}(t)] + \sum_{k} \gamma_{k}(t) \Big(L_{k}(t)\rho_{S}(t)L_{k}^{\dagger}(t) - \frac{1}{2} \{ L_{k}^{\dagger}(t)L_{k}(t), \rho_{S}(t) \} \Big) \\ &= -\frac{i}{\hbar} [H_{0} + \underbrace{V_{\mathrm{dr}}(t)}_{\mathrm{action of the drive}}, \rho_{S}(t)] + \underbrace{\mathcal{D}_{t}[\rho_{S}(t)]}_{\mathrm{action of the bath}} \qquad \text{with} \quad H_{S}(t) = H_{0} + V_{\mathrm{dr}}(t) \end{split}$$

> Observations: such situations present all required ingredients for thermodynamics:

- External drive/control \equiv mechanical control in classical thermodynamics
- Interaction with thermal bath \equiv interaction with thermal bath in classical thermodynamics

- A. Classical concept of work:
 - work \approx energy "without uncertainty" \approx "without noise" \approx "mechanical energy"
 - Examples of work exchange:



B. Classical concept of heat:

- Energy exchange associated with molecular excitation: random and disordered movements of molecules
- Energy exchange associated with change of entropy
- Disordered increase of kinetic energy:

average over all molecules of the ensemble/object/gas

 $\langleec{F}.\,\Deltaec{r}
angle=0$

→ Extension to classical stochastic thermodynamics

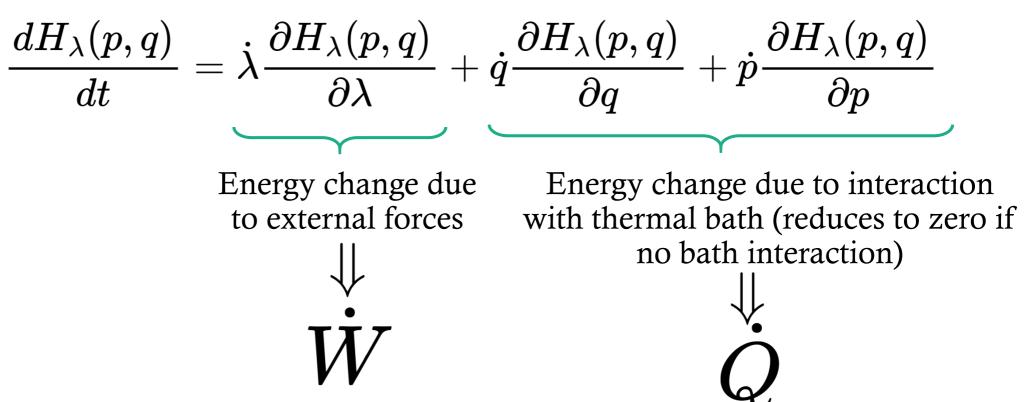
K. Sekimoto: Stochastic Energetics, Springer (2010)

- Context:
 - Single particle in contact with a thermal bath (= ensemble of other particules globally in a thermal state)

• Deterministic part of the dynamics is described by the classical Hamiltonian (Hamilton's equation of motion)

 \longrightarrow $H_{\lambda}(q,p)$ $\stackrel{\lambda: \text{ parametrizes the external forces acting on the system (external field and or confining potentials)$

- Non-deterministic (or stochastic) part of the dynamics is induced by the interaction with the bath → described by stochastic terms "a la Langevin"
- Infinitesimal energy variation:



C. Work for quantum systems

We consider a quantum system S described by a density operator $\rho_{S}(t)$ and Hamiltonian $H_{S}(t)$, and weakly interacting with a thermal bath. The resulsting dynamics is assumed to be of the form:

$$rac{d}{dt}
ho_S(t)=-rac{i}{\hbar}[H_S(t),
ho_S(t)]+\mathcal{D}_t[
ho_S(t)]$$
 describes the action of the bath

Work for quantum systems is:

• Exchange of energy "without uncertainty" ≈ "without noise"

 \Rightarrow Exchange of energy without change of entropy

- Change of energy due to external controls •
- Substituting $H_{\lambda}(p,q)$ by $Tr[\rho_{S}(t)H_{S}(t)]$ in the classical stochastic definition of work, • one gets: $\rightarrow \dot{W}_S(t) := \operatorname{Tr}[\rho_S(t)\dot{H}_S(t)]$

Infinitesimal work exchange

variation of the Hamiltonian due to variation of external parameters

$$\longrightarrow W_S(t) = \int_0^t du {
m Tr}[
ho_S(u) \dot{H}_S(u)]$$
 Finite work exchange

— Observation: we recover the proterty that work exchange is induced by external control or mechanical action, because in Quantum Mechanics time-dependent Hamiltonians are consequences of external controls (like systems driven by laser, magnetic fileds, etc.)

• Example: spin-1/2

Elementary particles have intrinsic angular momentum, $\rightarrow \hat{\vec{S}}$

which gives rise to **intrinsic magnetic moment** through the gyromagnetic factor γ

• Example: quantum harmonic oscillator

 $\left(\frac{1}{2}\right)$

$$\stackrel{\bullet}{\longrightarrow} \dot{W}(t) = \frac{1}{2}\dot{k}(t)\mathrm{Tr}\Big[\rho_S(t)\hat{X}^2\Big] \quad \text{and} \ W(t) = \frac{1}{2}\int_0^t du \ \dot{k}(u)\mathrm{Tr}\Big[\rho_S(u)\hat{X}^2\Big]$$

D. Heat for quantum systems:

- Variation of energy associated with changes of entropy
- Change of energy due to interaction with the thermal bath
- Substituting $H_{\lambda}(p,q)$ by $Tr[\rho_{S}(t)H_{S}(t)]$ in the classical stochastic definition of heat, one gets:

$$igstarrow \dot{Q}_{S}(t) := \mathrm{Tr}[\dot{
ho}_{S}(t)H_{S}(t)]$$
 Infinitesimal heat exchange
(for weak coupling
with the bath) variation of the state of the
system due to interaction
with the thermal bath
 $igstarrow Q_{S}(t) := \int_{0}^{t} du \mathrm{Tr}[\dot{
ho}_{S}(u)H_{S}(u)]$ Finite heat exchange

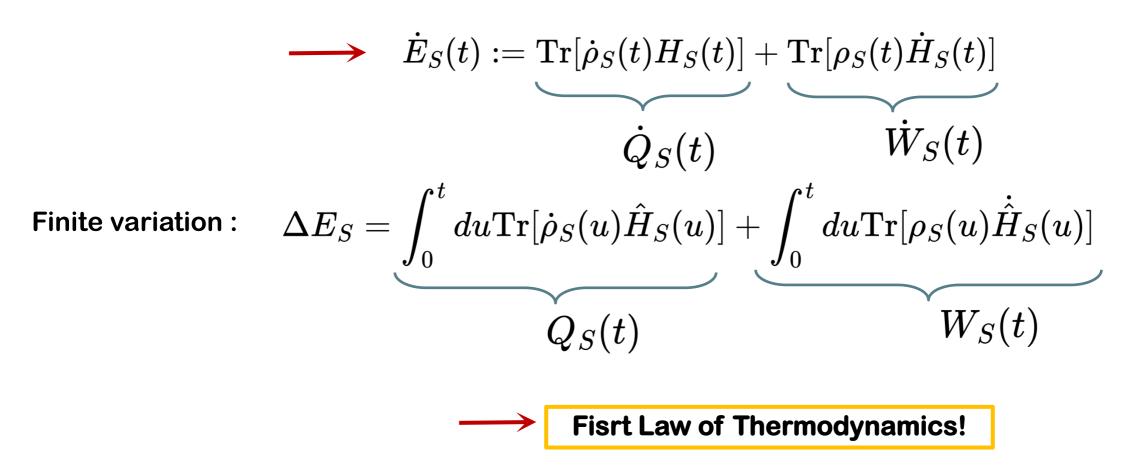
* *Exercise*: using the dynamics $\dot{\rho}_S(t) = -\frac{i}{\hbar} [H_S(t), \rho_S(t)] + \mathcal{D}_t[\rho_S(t)]$ show that $\dot{Q}_S(t) = \text{Tr} \Big[\mathcal{D}_t[\rho_S(t)] H_S(t) \Big]$

changes of energy induced by the bath

→ *Observation*: we recover the analogy with classical heat exchanges, where heat exchanges are induced by energy exchanges with thermal baths.

E. Total energy and first law for quantum systems

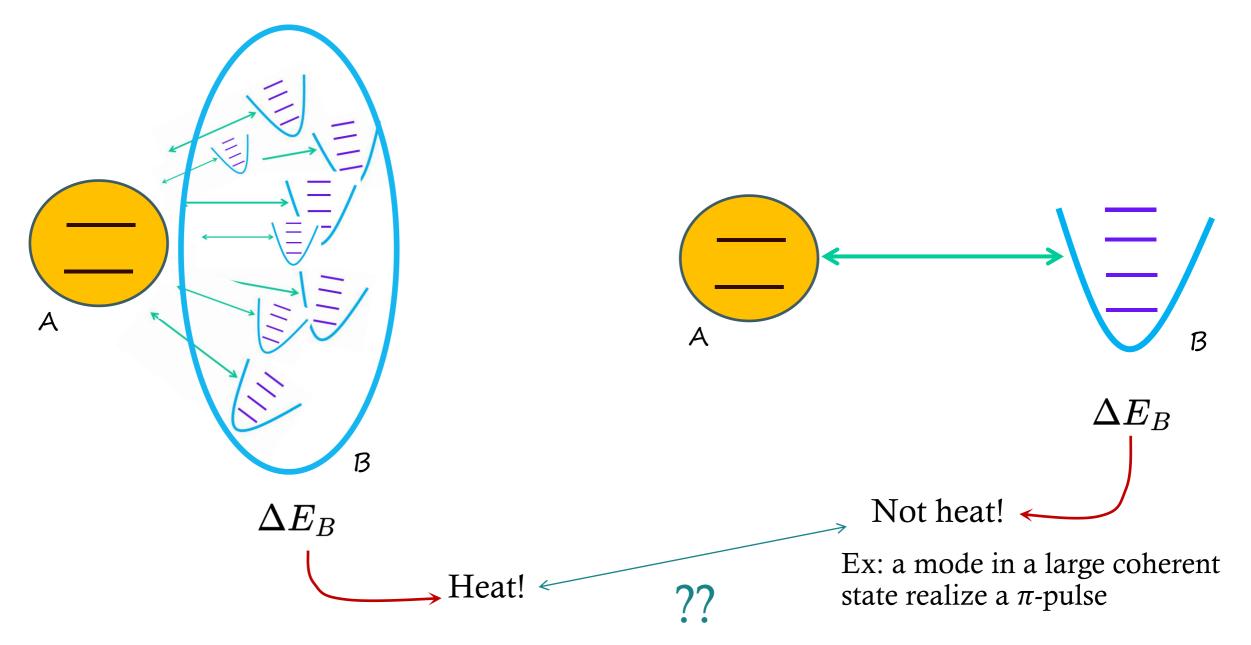
• Total energy of S: $E_S(t) := \operatorname{Tr}[\rho_S(t)H_S(t)]$



- Important to keep in mind:
 - Dynamics with no external drive: $W_S(t) = 0$
 - Dynamics with no interaction with the bath: $Q_S(t) = 0$
 - General dynamics: $W_S(t) \neq 0$ and $Q_S(t) \neq 0$

F. Limitations

- Non-thermal bath and/or finite bath
 - Why does the energy provided by the bath should always be heat?



Observation: the quantum system of interest is sometimes called S, and sometimes A. This is just a small confusion in the notation which has to be ignored: $S \equiv A$

Side notes

 $\dot{\rho}_A$

In this side note, we show that an harmonic oscillator B in a large coherent state tends to induce, on a short timescale, a time-dependent componant in the Hamiltonian of the qubit A.

$$\int_{A} H_{AB} = \frac{\hbar \omega_A}{2} \sigma_z + g \sigma_x (a^{\dagger} + a) + \hbar \omega_B a^{\dagger} a$$

General situation:
$$H_{AB} = H_A + X_A \otimes X_B + H_B$$

(valid for any system A and B)

$$\dot{\rho}_{AB} = -i[H_{AB}, \rho_{AB}(t)] \qquad (\hbar \equiv 1)$$

$$\dot{\rho}_{A}(t) = -i\mathrm{Tr}_{B}\{[H_{AB}, \rho_{AB}(t)]\} \qquad (\hbar \equiv 1)$$

$$\dot{\rho}_{A}(t) = -i[H_{A}, \rho_{A}(t)] - ig\mathrm{Tr}_{B}\{[X_{A} \otimes X_{B}, \rho_{AB}(t)]\} - i\mathrm{Tr}_{B}\{[H_{B}, \rho_{AB}(t)]\} = 0$$

$$If we neglect the correlations between A and B:$$

$$\rho_{AB}(t) \simeq \mathrm{Tr}_{B}\{\rho_{AB}(t)\} \otimes \mathrm{Tr}_{A}\{\rho_{AB}(t)\} = \rho_{A}(t) \otimes \rho_{B}(t)$$

 $egin{aligned} &\mathrm{Tr}_B\{[X_A\otimes X_B,
ho_A(t)\otimes
ho_B(t)]\} =\mathrm{Tr}_B\{X_A\otimes X_B
ho_A(t)\otimes
ho_B(t)\} -\mathrm{Tr}_B\{
ho_A(t)\otimes
ho_B(t)X_A\otimes X_B\}\ &=X_A
ho_A(t)\mathrm{Tr}_B\{X_B
ho_B(t)\} -
ho_A(t)X_A\mathrm{Tr}_B\{
ho_B(t)X_B\}\ &=[x(t)X_A,
ho_A(t)] \quad ext{ with } x(t) =\mathrm{Tr}_B\{
ho_B(t)X_B\} =\mathrm{Tr}_B\{X_B
ho_B(t)\} \end{aligned}$

Side notes (end)

Conlcusion:

$$\dot{
ho}_A(t) = -i[H_A + gx(t)X_A,
ho_A(t)]$$

neglecting correlations between A and B

 \rightarrow We obtain that neglecting the correlations between A and B results in: (i) a unitary dynamics for A; (ii) an effective Hamiltonian with a time-dependent component x(t) determined by the time evolution of B.

 \rightarrow However, one has to be careful: we made a big approximation, we neglected the correlations between S and B. **This is a resonable approximation only on short timescales** ($t \ll g^{-1}$) and when the state of B is very energetic and not affected by the influence of B. If one is interested in long time behavior, one has to consider correlations between A and B including for instance higher order contributions.

For the harmonic oscillator:

• Strong coupling

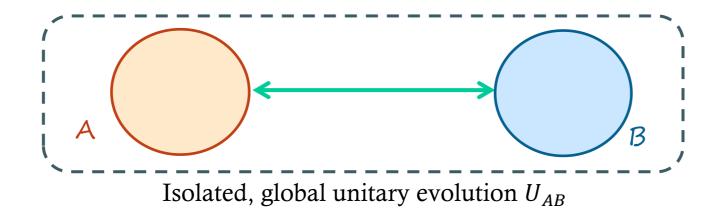
How to take into account the coupling energy?

$$\Delta E_{AB} = \Delta E_A + \Delta E_{\text{interaction}} + \Delta E_B$$

= Tr[$\rho_{AB}(t)V_{AB}(t)$] - Tr[$\rho_{AB}(0)V_{AB}(0)$]
Work or Heat?
Does it contribute to
the energy A or B?

A. Strong coupling

(M. Esposito, K. Lindenberg, C. Van den Broeck, Entropy production as correlation between system and reservoir, New J Phys 12, 013013 (2010))



Hypothesis: - B is initially in a thermal state - A and B are initially uncorrelated

$$\longrightarrow$$
 Heat: $Q_A(t) = -\Delta E_B \longrightarrow$ All energy exchanged with the bath is heat

$$\Sigma_A(t) = \Delta S_A - eta_B Q_A(t) \ge 0$$

(Clasius inequality extended to quantum system)

Variation of von Neumann entropy of A

$$\longrightarrow$$
 For the work, still $W_A(t) := \int_0^t du \operatorname{Tr}[\rho_A(u)\dot{H}_A(u)]$

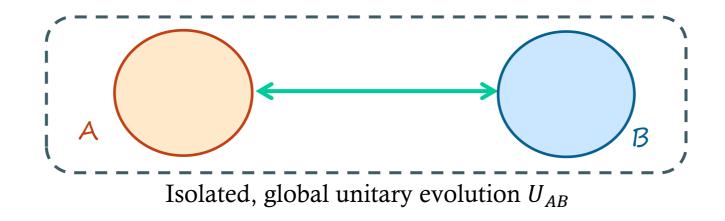
 \rightarrow Then, we can show

$$W_A(t) + Q_A(t) = \Delta E_A + \Delta E_{ ext{int}}$$
 $\Delta E_A := \operatorname{Tr}[
ho_A(t)H_A(t)] - \operatorname{Tr}[
ho_A(0)H_A(0)]$
 $\Delta E_{ ext{int}} := \operatorname{Tr}[
ho_{AB}(t)V_{AB}] - \operatorname{Tr}[
ho_{AB}(0)V_{AB}]$

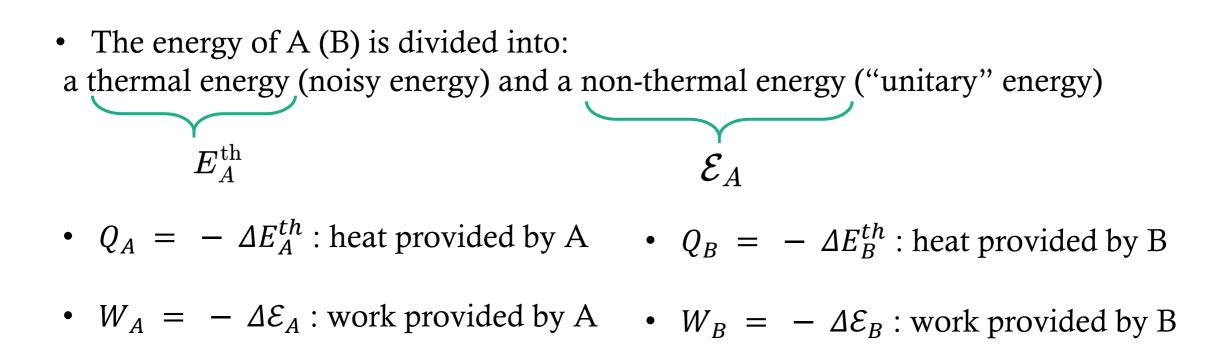
Conclusion: the interaction energy is included in the energy decomposition of heat and work

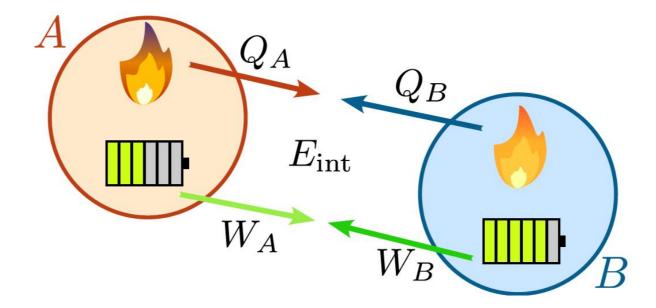
B. Autonomous thermodynamics

(C. Elouard, C. Lombard Latune: Extending the Laws of Thermodynamics for Arbitrary Autonomous Quantum Systems. PRX Quantum 4, 020309 (2023))



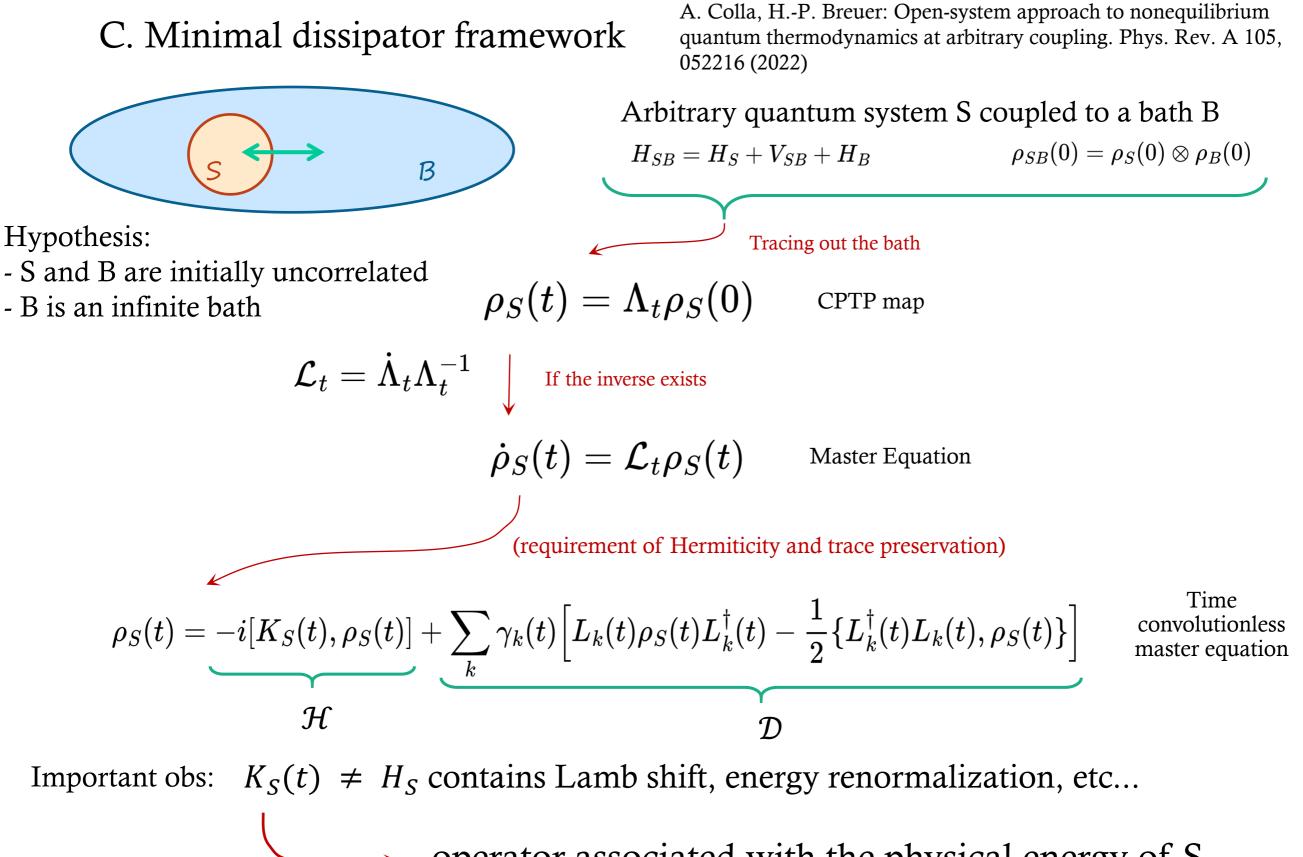
Hypothesis: A and B are initially uncorrelated





- $Q_A = -\Delta E_A^{th}$: heat provided by A $Q_B = -\Delta E_B^{th}$: heat provided by B
- $W_A = -\Delta \mathcal{E}_A$: work provided by A $W_B = -\Delta \mathcal{E}_B$: work provided by B

$$igstarrow \left\{ egin{array}{lll} \Sigma_A = \Delta S_A - eta_B Q_B \geq 0 \ \Sigma_B = \Delta S_B - eta_A Q_A \geq 0 \end{array}
ight.$$



operator associated with the physical energy of S

The plan:
$$\longrightarrow E_S(t) := \operatorname{Tr}[\rho_S(t)K_S(t)] \longrightarrow \begin{cases} Q_S(t) := \operatorname{Tr}[\dot{\rho}_S(t)K_S(t)] \\ \dot{W}_S(t) := \operatorname{Tr}[\rho_S(t)\dot{K}_S(t)] \end{cases}$$

(.)

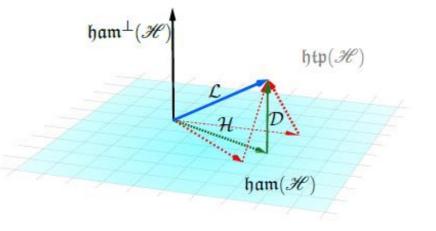
Problem: the form of the master equation is not unique

$$L_k(t) o L_k(t) - lpha_k(t) \mathbb{I}$$

$$K_S(t) o K_S(t) + \sum_k rac{\gamma_k(t)}{2i} \Big[lpha_k(t) L_k^\dagger(t) - lpha_k^*(t) L_k(t) \Big] + eta(t) \mathbb{I}$$

Solution: minimal dissipator

$$\langle \mathcal{L}_1, \mathcal{L}_2 \rangle = \langle \psi | \overline{\mathcal{L}_1[|\phi\rangle \langle \phi|] \mathcal{L}_2[|\phi\rangle \langle \phi|]} |\psi\rangle$$



Unique (mathematical) way to define $K_S(t)$

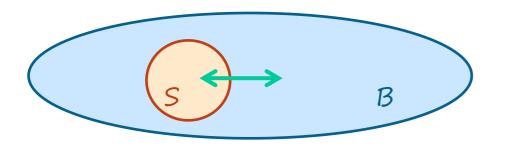
(Obs: the dissipator of minimal norm is composed of traceless jump operators)

Then, "usual" definitons (with the dissipator of minimal norm and associated unitary operator)

$$egin{aligned} &E_S(t):=\mathrm{Tr}[
ho_S(t)K_S(t)]\ &\dot{Q}_S(t):=\mathrm{Tr}[\dot{
ho}_S(t)K_S(t)]\ &\dot{W}_S(t):=\mathrm{Tr}[
ho_S(t)\dot{K}_S(t)] \end{aligned}$$

D. Hamiltonian of Mean Force Gibbs

P. Strasberg, Phys. Rev. Lett. 123, 180604 (2019) Á. Rivas,. Phys. Rev. Lett. 124, 160601 (2020)



Hypothesis: - S and B are initially uncorrelated - B is an infinite bath

 $H_{SB} = H_S + V_{SB} + H_B$

 \rightarrow Mean force Gibbs state:

$$ho_S^{MFG} := \mathrm{Tr}_B[e^{-eta H_{SB}}/\mathrm{Tr}_{SB}[e^{-eta H_{SB}}]]$$

(takes into account contributions from V_{SB})

$$H_S^{MFG} := -eta^{-1} \ln \left(rac{Z_{SB}}{Z_B}
ho_S^{MFG}
ight)$$

• Thermodynamic framework based on H_S^{MFG}

Energy of S: $E_S(t) = \text{Tr}_S[\rho_S(t)H_S^{MFG}]$

E. Additional frameworks

- Separated role of coherences
- B. d. L. Bernardo: Unraveling the role of coherence in the first law of quantum thermodynamics. Phys. Rev. E 102, 062152 (2020)
- A. Vallejo, A. Romanelli, V. Feldman, R. Donangelo: Evolution of expected values in open quantum systems. Phys. Rev. A 111, 032201 (2025)
 - Work operator
- ✤ A. E. Allahverdyan, Th. M. Nieuwenhuizen: Fluctuations of work from quantum subensembles: The case against quantum work-fluctuation theorems. Phys. Rev. E 71, 066102 (2005)
- T. A. B. Pinto Silva, D. Gelbwaser-Klimovsky: Quantum work: Reconciling quantum mechanics and thermodynamics. Phys. Rev. Res. 6, 2 (2024)
 - Question and debate around work fluctuation (see mroe details in lecture III)
- M. Perarnau-Llobet, E. Bäumer, K. V. Hovhannisyan, M. Huber, A. Acin: No-Go Theorem for the Characterization of Work Fluctuations in Coherent Quantum Systems. Phys. Rev. Lett. 118, 070601 (2017)
- T. A. B. Pinto Silva, D. Gelbwaser-Klimovsky: Quantum work: Reconciling quantum mechanics and thermodynamics. Phys. Rev. Res. 6, 2 (2024)

Recap on heat and work

- Heat for quantum systems is intimately related to interaction with external degrees of freedom and change of local entropy
- Work for quantum systems is intimately related to classical control and unitary transformation (coherent energy exchange)
- For weak coupling, with infinite thermal bath, all definitions converge to the one given at the beginning of the lecture:

$$egin{aligned} Q_S(t) &= \int_0^t du ext{Tr}[\dot{
ho}_S(u) H_S(u)] \ W_S(t) &= \int_0^t du ext{Tr}[
ho_S(u) \dot{H}_S(u)] \end{aligned}$$

- For strong coupling: contributions from interaction energy have to enter the game \rightarrow how it is taken into account depends on the framework
 - Esposito, Lindenberg, Van den Broeck
 Colla and Breuer
 Mean force Hamiltonian
- For finite bath, the evolution of the state of the bath has to be taken into account
 - Esposito, Lindenberg, Selouard and Latune
 Van den Broeck
- Which framework is the more accurate? \rightarrow Still debated, most probably depends on the context

Recap on the open quantum system part

- Open quantum dynamics are described in term of "dissipators" or "dissipative operators", D_t.
- Dissipative operators contains **jump operators** L_k promoting **quantum jumps** at rate determined by the coefficients γ_k , the **jumping rates**.
- At long time, the succession of *quantum jumps* leads to decoherence and energy decay, and eventually to thermalization at the bath's temperature.
- Notions of **information** (S_{nV}), **work** (W), and **heat** (Q) can be defined in the quantum regime. From the fundamental point of view, they are central to analyse the intimate relation between energy and information in the quantum regime. From a practical perspective, they are crucial to analyse, understand, and enhance the performances of quantum operations.