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Part 1: History, v5 overview, basic examples




Overview:

* History and background of QuTiP

e QuTiP main functionality: noise simulation and open system dynamics
* QuTiP v5: what has changed?

e QuTiP-QIP: pulse-level simulator of quantum circuits

e Role of QuTiP and QuTiP-QIP in the future?

* More developed circuit simulator?
* Cloud-computer backends (lonQ, IBM, etc)?



Quantum software

2002 qgoToolbox Matlab University of Auckland
2004 CHP C Berkeley, USA

2006 Qubiter C++ Artiste-gb, Canada
2007 QCF Matlab Oxford University

2009 PyQu Python Google

2010 QuBit C++ Steven Goodwin

2011 QuTiP Python Riken, Japan

2013 Q++ C++ Cybernet Systems Corp
2013 SQCT C++ University of Waterloo
2014 QuanSuite Java Artiste-gb

2014 QCPG gScript Google

2014 Quipper Haskell Dalhousie University
2015 Quantum++ C++ University of Waterloo
2016 QETLAB Matlab University of Waterloo
2016 Liqui|> F# Microsoft

2016 Quant. Fog Python Artiste-gb

2016 Qubiter Python Artiste-gb

2017 ProjectQ Python ETH Zurich

2017 Forest (QUIL)Python Rigetti

2017 QlSKit Python IBM

2017 Quantum Optics.jl Julia Universitat Innsbruck
2017 PsiQuaSP  C++. Gegg M, Richter M

Strawberry Fields
PennyLane
Quantum Dev Kit
QCGPU Rust,
NetKet
OpenFermion
CirQ

Qulacs

Yao.|l
TensorFlow Q
Pulser

MitiQ

Many more!

Based on qosf.org/project_list/

Python
Python
Q#.
OpenCl
C++
Python
Python
Python
Julia
Python
Python
Python

QuTIP

Original Developers

Paul Nation
IBMQ

Library designer and main contributor

Xanadu, Canada
Xanadu, Canada
Microsoft
Adam Kelly
The Simons Foundation
Google, Harvard, ETH ..
Google

QunaSys, Osaka, NTT, Fujitsu

Luo and Liu
Google
Pasqal
Unitary Fund

a!

Robert Johansson

Tokyo, Japan

Library designer and main contributor



QuTiP history

2012: QuTiP v1 release: Functionality comparable to Matlab’s quantum optics toolbox

2013: QuTiP v2 release: Time-dependent Hamiltonian support, Bloch-Redfield solver, Floquet-Markov solver

2014: QuTiP v3 release: Stochastic master equation, steady-state solvers, first release of qutip.qip module (circuit simulator)
2016: QuTiP v4 release: HEOM solver, quantum optimal control (Alex Pitchford and myself begin to contribute)

..... minor releases including PIQs solver (Nathan and Shahnawaz), updates to HEOM and optimal control solvers.
Robert Johansson and Paul Nation move on to new careers (Rakuten and IBM-Q, respectively), period of crisis!

2018/2019: New development team formed during RIKEN workshop, new guidelines for administration and developer responsibilities

-

L

Nathan Shammah
(RIKEN, now Unitary
Fund)

Alex Pitchford Eric Giguere Shahnawaz Ahmed
(Aberystwyth) (Sherbrooke) (RIKEN, now Chalmers)

2019: V4.4: QobjEvo introduced, and first Google Summer of Code (GSOC) engagement and students.

2020: v4.5: Major update to QuTiP-QIP (result of GSOC student project of Boxi Li)

2021: v4.6: OpenQASM support, QuTiP-QIP further development, better support for Windows (to solve Cython woes)
2022: v4.7: Major update to HEOM solver, Krylov subspace solver, etc..



Current administration and development team

Eric Giguere
Sherbrooke

-
«

Shahnawaz Ahmed
Chalmers, former
RIKEN intern

Boxi Li, Julich,
Former GSOC

o

Asier Galacia,
Julich, former GSOC

Jake Lishman
IBM, former GSOC
Note: quasi-retired

Alex Pitchford
Aberystwyth

Simon Cross
Zurich Instr.,
former RIKEN
Tech. Staff.

Paul Menczel,
RIKEN

Patrick Hopf
Munich, RIKEN intern

Nathan Shammah
Unitary Fund, former
RIKEN postdoc

Neill Lambert

Additional contributors

*Denis Vasilyev (Leibniz)

*Kevin Fischer (Stanford)

*Anubhav Vardhan (New Dehli, India)
*Markus Baden (Zurich, Switzerland)
Jonathan Zoller (UIm University)
*Ben Criger (RWTH Aachen)

*Ben Bartlett (Stanford)

Piotr Migdat (Warsaw, Poland)
*Arne Grismo (Amazon)

*Cassandra Granade (Microsoft)

+ 100s more

Advisory board:

Franco Nori, RIKEN

Anton Frisk Kockum, Chalmers
Robert Johansson, Rakuten
Daniel Burgarth, Erlangen

Will Zheng, Unitary Fund



QuTiP history
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Recent development team expanded through:
Google Summer of Code Google

Summer of Code

GSOC has been hugely beneficial to QuTiP, and led to many new features, including QuTiP-QIP, and the
data layer which forms the backbone of QuTiP v5.

2019-2024 we have supported 16 GSOC projects (2-3 per year).

Three of these students joined the admin team after continued contributions

y

Boxi Li, Julich, . . . . .
OX.I !, JUIC . Asier Galacia, Julich Jake Lishman, Imperial
Project: QuTiP-QIP i ) i
Project: QuTiP-TensorFlow Project: new data layer

Note: already quasi-retired (IBM-Q)
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Statistics and growth:

# PyPI downloads

| Package | 2021 | 2022
| - - | :=-—-—- | :-—--—-
| **QuTiP#* | }
| - Downloads (total, all time) | 277 046 | 654 590
| - Downloads (last 30 days) | 14 628 | 36 748
| - Dependent packages | 26 | 39
| #%QuTiP QIP#*%* l ]
| - Downloads (total, all time) | 3298 | 13 025
| - Downloads (last 30 days) | 509 | 727
# Conda downloads
| Package | 2021 | 2022
| ESSsss=sosssossoooooosoooooos | F===== | s=====
| **QuTiP** l 1
| - Downloads (total, all time) | 407 145 | 502 775
| - Downloads (last 30 days) | 5 621 | 4 990
L7 1e6 QuTiP Total Downloads
© 7| == QuTiP Total (PyPI)
1.50 QUuTIP Total (Conda)
n 1.25
o
o
= 1.00
2
R 0.75
0.501
0.251 '/ | |
2021 2022 2024

Year

https://www.wheelodex.org/projects/qutip/rdepends/

Some interesting dependent package highlights:

» AtomCalc (simulates atomic energy level shifts in laser
fields)

* bosonic-qiskit (National Quantum Initiative Co-design
Center for Quantum Advantage bosonic Qiskit
simulator)

* chalmers-qubit (A simulator of the Chalmers device to
be used with qutip-qip)

* dynamigs (High-performance quantum systems
simulation with JAX (GPU-accelerated & differentiable
solvers)

* filter_functions (A package for efficient numerical
calculation of generalized filter functions to describe the
effect of noise on quantum gate operations)

* kqcircuits (KQCircuits is a KLayout/Python-based
superconducting quantum circuit library developed by
QM)

* netket (Machine Learning toolbox for many-body
guantum systems)

«giskit-metal (for quantum device design & analysis)
*scqubits (superconducting qubits in Python)

*SQcircuit (superconducting quantum circuit analyzer)
11



Installing QuTiP:

There are simple cloud options, but these are limited in compute power:
* Google collab: e.g., companion notebook for this talk

Local browser-based options:

* https://qutip.org/try-qutip/
 Runs QuTiP in your browser

* QuTiP Virtual Lab (https://qutip.org/qutip-virtual-lab.html).

Local install with:
»  pipinstall qutip

or for anaconda
»  condainstall qutip

Note: windows users, solve all your problems by using Windows Subsystems for Linux (WSL)


https://www.google.com/url?q=https%3A%2F%2Fqutip.org%2Fqutip-virtual-lab.html

Overview:

* History and background of QuTiP

* QuTiP main functionality: noise simulation and open system dynamics
* QuTiP v5: what has changed?

e QuTiP-QIP: pulse-level simulator of quantum circuits

e Role of QuTiP and QuTiP-QIP in the future?

* More developed circuit simulator?
* Cloud-computer backends (lonQ, IBM, etc)?



Overview of QuTiIP Functionality

1. QuTiP-Core

: Data Layer
Qo bj Dense, CSR and DIA

Functions
Eigenstates, Matrix elements, Norms, etc.

Utility Functions

Qobj Entanglement measures, Distances,
class Superoperator representations (Choi, Kraus, etc.),

Channels, ENR states, Two-time correlation
functions and spectra, MPI support, etc.

2. QuTiP-Packages

Packages Q.IP. Pulse-based Quantum Circuit
Simulator
allows circuits to be run on different hardware
Extension backend simulations at the level of time-dependent
pulses and noise.

QOC: Quantum Optimal Control

Package
supports for CRAB, GRAPE and GOAT algorithms.

mesolve krylovsolve
SO I Vers Lindblad master equation Krylov subspace solver
mcsolve+nm_mcso|ve smesolve
Monte-Carlo master Stochastic master equation
equation
System g HEOMSsolver
Environment brmesolve Hierarchical equations of
0 Bloch-Redfield master motion
equation
o a PIQS
N fmmesolve Permutational invariant
Floquet master equation systems

JAX:. JAX Data Layer

supports the popular JAX package, allowing for
GPU and autograd.

14



1. QuTiP-Core Qobj

Qobj
class

States and operators can be defined from arrays, or use predefined common structures.

SZ = qt-QDbj([[l: 91: [9: '1]])

print(sz)
Ei}
Qobj data =
[[ 1. o.]
[ 0. -1.]]

Data Layer
Dense, CSR and DIA

Functions
Eigenstates, Matrix elements, Norms, etc.

Utility Functions
Entanglement measures, Distances,
Superoperator representations (Choi, Kraus, etc.),
Channels, ENR states, Two-time correlation
functions and spectra, MPI support, etc.

# the sigma-z Pauli operator

Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=True

15



1. QuTiP-Core, guantum object properties

All objects have a set of properties, most of which the user doesn’t need to see

| |
| S

[4]

1 QO

| |
| -]

[4]

| |
| S

[4]

sz.dims

[[2], [2]]

sz.shape

(2, 2)

sz.data

Dense(shape=(2, 2), fortran=False)

sz.full()

array([[ 1.+0.j, ©.+0.j],
[ ©.+0.j, -1.+08.3]])

Dims, or dimensions, are mostly usefully thought of as
maps:

» States (bra and kets), which are vectors, map vectors to
scalars

» Operators, which are matrices, map vectors to vectors

* Super-operators, which are also matrices, map vectorized
operators to vectorized operators (see later)

 Compound (tensor) objects operate in the same way, but
dims properties store the compound structure

16



1. QuTiP-Core, object arithmetic

We can perform basic arithmetic with quantum objects; the rules are similar to standard matrix arithmetic

o H=1.0 * gt.sigmaz() + 6.1 * gt.sigmay()
print(H)
Ei} Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', dtype=CSR, isherm=True
Qobj data =
[[ 1.40.5 ©0.-0.15]
[ 0.40.17 -1.+0.7 ]]
° print(H @ H) #H * H will work too!
3+ Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', dtype=CSR, isherm=True
Qobj data =
[[1.01 0. ]
[0. 1.01]]

[ 1 print(H ** 3)

(4]

Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=True

Qobj data =

[[ 1.01+8.] 0. -0.1017j]

[ 0. +0.101j -1.01+0.5 ]] 17



1. QuTiP-Core, object methods (functions)

There are many inbuilt functions, or methods, in quantum objects to perform common tasks:

# The hermitian conjugate
print(H.dag())

©

Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=True
Qobj data =

[[ 1.40.5 ©.-0.15]

[ ©.4+0.17 -1.+0.7 ]]

[4]

# The trace
print(H.tr())

[ |
[ —

0.0

[4]

| |
| S—

# Eigen energies
H.eigenenergies()

array([-1.00498756, 1.00498756])

[4]



1. QuTiP-Core, state vectors

When using QuTiP you normally need to make states and operators, and use them in some way.
There are several convenient ways to build up the objects you might need:

State vectors:

©

4]

1 O

# Fundamental basis states (Fock states of oscillator modes)
It's common in discrete quantum systems to make a

L IIEES EF SEiEs L HNE SILOETE SEREE basis out of Fock states |n) which describes a
2 # the state that will be occupied et s .
excitation in the n-th level of the system

n
print(qt.basis(N, n)) # equivalent to fock(N, n)

Quantum object: dims=[[4], [1]], shape=(4, 1), type='ket’
Qobj data =
[[e.]

[6.]

[1.]

[e.]]

print(qgt.basis(N, n).dag())

Quantum object: dims=[[1], [4]], shape=(1, 4), type='bra', dtype=Dense
Qobj data =
[[6. ©. 1. 0.]] 19



1. QuTiP-Core, Fock states and coherent states

When considering single-mode cavities Fock states are often thought of as labelling the number of photons in the mode,
but coherent states and superpositions are also possible (among many more):

o hsuperposition of two states:

v o # a coherent state

Os si2 = (gqt.fock(4, 2) + gt.fock(4, 3)).unit
psi = qt.coherent(N=8, alpha=1.9) ' (@ ( )+ 4 ( )) 0

print(psi2)
qt.plot fock distribution(psi2)
gt.plot wigner(psi2);

#built in plotting functions

)

Quantum object: dims=[[4], [1]], shape=(4, 1), type="ket’
Qobj data =
gt.plot_fock distribution(psi) [[e. 1
. : [e. ]
gt.plot_wigner(psi) [0.76710678]
[0.70710678] ]

1.0

1.0

o
@
IS
54
©
s
S

—24
-2 1

Occupation probability

o o
- o
Im(a)

o N
Occupation probability
(=] o
B o
Im(a)

o N
.
W

—4

°
N
M
o
N
|
IS

—6

_6<

00- P ; ; 6 4 2 0 2 4 6 0.0

— - - . " : v !

0 ' : F?)cknu:nber > e ’ 8 Re(a) -05 00 05 10 15 20 25 30 35 40
Fock number

20



1. QuTiP-Core, operators

Annihilation and creation operators are also commonly used to create operators which connect Fock states:

aln) = v/aln - 1)

; [1e] # annihilation operator for a harmonic oscillator

a = qt.destroy(N=4)

print(a) # N = number of fock states included in the Hilbert space

3¥ Quantum object:

Qobj data =

[[o.

[o.
[o.
[o.

OO @ =

dims=[[4], [4]], shape=(4, 4), type='oper', dtype=Dia, isherm=False

0. 0. 1
1.41421356 0. 1
. 1.732085081]
0. 0. 11

alln) = v/n+1|n+1)

[@2] print(a.dag())

E{}' Quantum object: dims=[[4], [4]], shape=(4, 4), type='oper', dtype=Dia, isherm=False
Qobj data =

[[e.
[1.
[@.
[e.

Q.
9.
1.
0.

41421356 0O.
1.73265081

[ I ]
— e e

[11] # annihiltion operator acting on a 1 photon fock state:

)

print(qt.fock(4, 1))
print(a * (qt.basis(4, 1)))
print(a.dag() * (qt.basis(4, 1)))

Quantum object: dims=[[4], [1]], shape=(4, 1), type='ket', dtype=Dense

Qobj data =
[[e.]
[1.]
[e.]
[e.]1]

Quantum object: dims=[[4], [1]], shape=(4, 1), type="ket', dtype=Dense

Qobj data =
[[1.]
[e.]
[e.]

[e.]1]

Quantum object: dims=[[4], [1]], shape=(4, 1), type='ket', dtype=Dense

Qobj data =
[[e. ]
[e. ]
[1.41421356]
]

[e. 1

21



QuTiP-Core, Fock state truncation

Note: The creation and annihilation operators for Bosons should obey the commutation relation:

[a,a*] =1

° def commutator(opl, op2):
return opl * op2 - op2 * opl

a = qt.destroy(5)

print(commutator(a, a.dag()))

[4)

Quantum object: dims=[[5], [5]], shape=(5, 5), type='oper', dtype=Dia, isherm=True

Qobj data =

[[ 1. ©. ©. 0. 0.]
[ 0. 1. ©. 0. 0.]
[ 0. ©. 1. 0. 0.]
[ . ©. ©. 1. 0.]
[ 0. ©. 0. 0. -4.]1]

‘o

Numerical truncation of infinite dimensional Hilbert space will always include this error; usually
it is sufficient to choose a cut-off much larger than the states of interest, and things will be ok!



1. QuTiP-Core, tensor of composite systems

Composite systems (states): When we try to model two systems, like multiple spins, or a spin interacting with a
cavity, we must take the tensor product of their spaces.

For example, the tensor product of two two-level systems gives us four possible states: 00, 01, 10, 11.

print(gt.tensor(qgt.basis(2,0), gt.basis(2,0)))

Ez} Quantum object: dims=[[2, 2], [1, 1]], shape=(4, 1), type=‘ket', dtype=Dense
Qobj data =

[[1.]
[0.]

. ]
[0.]1]

Note the dimensions are composite: the dims list [[2,2],[1,1]], tells us this is the tensor of
two vectors.

A single 4-level system would have dims [[4], [1]].
23



1. QuTiP-Core, partial trace

©

)

Composite systems:
Sometimes we wish to remove information, or trace out, about one subsystem.
This is commonly used to make statistical mixtures (density operators) out of pure states on a larger space.

The act of tracing out introduces statistical uncertainty in the state of the subsystem.
QuTIiP supports this with the 'ptrace' class method.

ptrace takes as an argument a list of integers determining which subsystems to keep.

psi = (qgt.tensor(qgt.basis(2, @), gqt.basis(2, 1))+
gt.tensor(qgt.basis(2, 1), gt.basis(2, ©))).unit()
print(psi)
print(psi.ptrace(@)) #leave the first subsystem indexed by ©
#returns an operator (density operator) which is now a fully mixed state (50/50 probability)

Quantum object: dims=[[2, 2], [1, 1]], shape=(4, 1), type='ket"’
Qobj data =
[[e. ]
[0.70710678]
[0.70710678]
[©. 1]
Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=True
Qobj data =
[[0.5 0. ]
[6. ©.5]] 24



1. QuTiP-Core, composite operators

Composite systems (operators):
If we want to create a Pauli operator that acts on the first qubit and leaves the second qubit unaffected, we would do:

o szl = gt.tensor(qgt.sigmaz(), qt.qgeye(2))
print(szl)

Ez} Quantum object: dims=[[2, 2], [2, 2]], shape=(4, 4), type='oper', isherm=True

Qobj data =

[[ 1. 0. 0. 0.]
[ 0. 1. 0. ©.]
[ 0. 0. -1. ©.]
[ 0. 0. 0. -1.]]

Above we used the geye(N) function, which generates the identity operator with N quantum states

Using the same method we can create coupling terms like o, & o,

[ 1 print(qt.tensor(gt.sigmax(), qt.sigmax()))

EE} Quantum object: dims=[[2, 2], [2, 2]], shape=(4, 4), type='oper', isherm=True
Qobj data =

[[0. 0. O.

[0. 0. 1.

[0. 1. o.

[1. ©. ©

25
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1. QuTiP-Core, composite operators

Composite systems (Hamiltonians):
By combining all this functionality (operators, arithmetic, tensor structure), we can define useful things like
Hamiltonians!

[ ] epsilonl = 1.0
epsilon2 = 1.0
g = 0.1

szl = gt.tensor(qt.sigmaz(), gt.geye(2))
sz2 = qt.tensor(qt.geye(2), qt.sigmaz())

sx1l = gt.tensor(gt.sigmax(), gt.geye(2))
sx2 = gt.tensor(gt.geye(2), qgt.sigmax())

H = epsilonl * szl + epsilon2 * sz2 + g * sx1 * sx2

print(H)

)

Quantum object: dims=[[2, 2], [2, 2]], shape=(4, 4), type='oper', isherm=True

Qobj data =
[[ 2. 0.
[ o.
[ o.
[ 0.1

1
1

N O OO
[ R T R

0.
Q. 0.
0.1 0.
Q. 0.

26



1. QuTiP-Core: Schrodinger equation

With states and operators (Hamiltonians) we are in a good position to solve something like the

Schrodinger equation! dw .
— = —iHYy
dt

Numerically we have a few options (depending on if H itself is time-dependent or not!)

Just exponentiate the Hamiltonian [easy with qutip, U=(-1.0j * t * H).expm()]:

p(t) =U(t)pg  UR) =e M

In practice, this is not ideal for large problems (U is a very dense object), but useful if you want to
try many different initial conditions with the same propagator (also see propagator() function)

More commonly, we simply case the equation as a coupled initial-value problem ODE, and
treat it with standard numerical ODE techniques (Runge-Kutte, Adams, Vern, are all provided

as options).

27



" mesolve krylovsolve
1 . Q u TI P - CO re SO Ivers Lindblad master equation Krylov subspace solver

mcsolve+nm_mcsolve smesolve

Monte-Carlo master Stochastic master equation
equation
System a HEOMsolver
Environment brmesolve Hierarchical equations of
Bloch-Redfield master motion
aﬁ equation PIQS
\?/ fmmesolve Permutational invariant
Floquet master equation systems

H = epsilonl * sz1 + epsilon2 * sz2 + g * sx1 * sx2

o psi® = qt.tensor(qgt.basis(2, ©), gt.basis(2, 1))

# list of times for which the solver should store the state vector
tlist = np.linspace(©, 10, 100)

result = gt.sesolve(H, psi@, tlist, [])




1. QuTiP-Core: Schrodinger equation

The result object contains information about how the solution went, and, importantly, a list of states for times provided in
tlist. Note: tlist does not set the time-step of the solver! That is dynamic and done internally.

[ ] print(result)

M
[a—

— len(result.states)
=¥ <Result
L

Solver: sesolve 3> 1lee
Solver stats:
method: 'scipy zvode adams' @© rrint(result.states[-1]) # the finial state
init time: ©0.00046181678771972656 —_ ) _
] ] =~ Quantum object: dims=[[2, 2], [1, 1]], shape=(4, 1), type="ket’
preparation time: 0.0005383491516113281 Qobj data =
run time: 0.03354167938232422 %0- +0.3 %
e . ., 0.28366659+0. j
osolyer. Schrodinger Evolution 0. +0.958922977]
Time interval: [0.0, 10.0] (100 steps) [e. +0. 7 1]

Number of e ops: ©
States saved.

29



1. QuTiP-Core: Schrodinger equation

1
We the states we can calculate expectation values of observables, like (g‘é ) >

0

1.00 A

0.75 4

0.50 +

0.25 +

0.00 +

G

—0.25 A

—0.50 4

—0.75 4

—1.00 A

[ ]

fig,

dXes
dXes
dXes
dXes

axes = plt.subplots(1l, 1)

.plot(tlist, gt.expect(szl, result.states))

.plot(tlist, gt.expect(sz2, result.states))
.set_xlabel(r"$t$", fontsize=20)
.set_ylabel(r"$\left<\sigma z*{(i)}\right>$", fontsize=20);

psi® = gt.tensor(qt.basis(2, ©), qt.basis(2, 1))

Note, with qubits, the state basis(2,0) is the excited state!
(this is a little counter-intuitive, and catches people out)

Here the Schrodinger equation tells us that the qubits, when on
resonance just exchange energy with a frequency proportional to

their coupling strength
30



1. QuTiP-Core: Dissipation and noise

Dissipation: One of the primary features of QuTiP is in the easy ability to simulate open quantum systems.

In adding dissipation, we introduce classical uncertainty and move away from solving the
Schrodinger equation with pure states (vectors). Instead, we consider mixtures of pure states,
which most conveniently can be written as density operators (like mixtures of projection operators

onto pure states) of the form:
p=> prlte)fv
k

The most common equation of motion for open systems is a Lindblad master equation:

p(t) = —L[H(1). p +Z 2Cuplt)C} = POCICn = ChCupl0)

o # to define noise the simplest way is to include a collapse operator
I 1 sml = gt.tensor(qt.destroy(2).dag(), qt.geye(2))
sm2 = gt.tensor(qt.geye(2), qt.destroy(2).dag())

H = epsilonl * sz1 + epsilon2 * sz2 + g * sx1 * sx2

gamma = 0.1 #dissipation rate
c_ops = [np.sqrt(gamma) * sml, np.sqrt(gamma) * sm2]
<VJ/E§§ M
= A

31



1. QuTiP-Core: Dissipation and noise

Dissipation: super-operators:
The master equation in this form is a matrix — matrix ODE, not a matrix-vector ODE. This can

still be solved as is (Krauss representation), but for small system sizes it is convenient to instead
Convert it to a matrix-vector equation using the concept of ‘super-operators’.

Here we convert N X N density operators into 1 x N2 vectors, and
NxN operators into N? x N? superoperators (sometimes called Liouville space)

Vi) ($j| [} @ [9))

rho = gt.basis(2,8) * gt.basis(2,8).da
i ( ) . ( )-dag() qt.operator_to vector(rho)

(l“) > (i)

0 0

A;) ;| B ey (BT @ A)(|20;) @ |15))

0o -1 0 0
qt.sprepost(sz,sz) — 0o 0 -1 0




1. QuTiP-Core: Dissipation and noise

b1

fig, axes = plt.subplots(l, 1)
axes.plot(tlist, result.expect[0])
axes.plot(tlist, result.expect[1])
axes.set_xlabel(r"$t$", fontsize=20)

tlist = np.linspace(9, 10, 100)

# request that the solver return the expectation value
# of the photon number state operator a.dag() * a
result = gqt.mesolve(H, psi®, tlist, c ops, e ops = [szl, sz2])

axes.set_ylabel(r"$\left<\sigma_z~{(i)}\right>$", fontsize=20);

1.00 A

0.75 A

In this naive example, the master equation just describes
damping on each qubit as a rate ‘gamma’ in their local basis.

The validity of this kind of phenomenological noise depends on
underlying physical parameter ranges.




1. QuTiP-Core

For this reason qutip has many more solvers! something we will revisit in part 2!
- |Local Lindblad

Solvers

mesolve
Lindblad master e

fmmesolve

X
N ® A
Floquet master

krylovsolve
Krylov subspace solver

guation

Stochastic master equation

equation

mcsolve+nm_mcsolve smesolve
Monte-Carlo master

System equation
+
Environment brmesolve
Bloch-Redfield master
Q equation

HEOMsolver

Hierarchical equations of
motion

PIQS

Permutational invariant
systems

- = Dressed Lindblad

1.0 - |Local Lindblad 1.0
(a) - = Dressed Lindblad (b)

05 Bloch-Redfield 05 Bloch-Redfield
3 00 T 00 | .
— — i '. i 1 - A

4 R4 N\ s
~0.5 —0.5 " v
-1.0 | . . _ —1.01 ' , , . .
10 20 30 40 0 10 20 30 40
t/s71

t/e71



Spin-boson model: e.g., Bloch-Redfield

With a bit more work (!) one can arrive at something like

For eigenstates [1);) of Hg, and ¢;; = (¢;|o.|¢1) Aj,l — Ej — FJ; s the difference in eigenenergies.

%ps(t) = —i[Hg, p(t)]

37 T(A)lesl (n(Ag) + 1) [21) (w5105 (1) [15) (] — {I5) (@51, ps}]

j=>1,1

+Yy 0 J(A)

>l

n(Aj) [214;) (Wil ps (@) |4b) (] — {|v0) (sa], ps}]

Cjl

The first part is the coherent system evolution, the second part describes spontaneous and

stimulated emission, and the third part describes absorption. n(w) = (e*/T — 1)1
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QuTiP-Core: adding time-dependence to the system

Time-dependent systems: We often need to capture coherent classical driving of a qguantum system, which
can require introducing time-dependent operators into a Hamiltonian.

In QuTiP we provide a generalization of the Qobj() for time-dependent problems: QobjEvo().

QobjEvo() can be instantiated with a list to represent objects like A(t) — E fk(t)Ak
k

With [A0, [A1, f1], [A2, f2], ...]

where the time-dependent functions are given by one of:

def cos_t(t):
* A python function, which takes as an argument the time and returns a scalar: s e SR )

e A string which corresponds to a valid combination of Python functions:  string_form = qutip.QobjEvo([n, [a + ad, "cos(t)"]])

* An array of values for different times (useful for costly complex functions or experimental data).
* Intermediate undefined values are interpolated.

tlist = np.linspace(@, 10, 101)
values = np.cos(tlist)

array_form = qt.QobjEvo([n,[a+ad, values]], tlist=tlist) 36



1. QuTiP-Core: adding time-dependence to the system

Time-dependent systems: Consider a standard example of a driven qubit with the time-dependent
Hamiltonian

A A
H = 50z + 5 sin(wgt)o, .

We also include dissipation with rate 7}

def f(t):

First define time-dependence (functional here): return np.sin(omega d * t)

# Time-dependent Hamiltonian
HO = Delta / 2.0 * gt.sigmaz()
H1 = [A / 2.0 * gt.sigmax(), f]
H = [HO, H1]

Then define time-dependent operators (actually
calling QobjEvo() is optional):

37



1. QuTiP-Core: adding time-dependence to the system

Time-dependent systems: Consider a standard example of a driven qubit with the time-dependent
Hamiltonian

A A
H = 50z + 5 sin(wgt)o, .

We also include dissipation with rate 7}

Call Lindblad master equation with either just lists or QobjEvo()

# --- mesolve ---

c_ops_me = [np.sgrt(gamma) * qgt.sigmam() |
me_result = gt.mesolve(H, psi@, tlist, c_ops=c_ops_me, e _ops=e_ops)

A—wd A
5 O, + —0z,

4

Lets compare to Rotating wave approximation Hamiltonian: Hgwa =

# --- mesolve, RWA ——4

c_ops_me RWA = [np.sgrt(gamma) * qgt.sigmam() ]
H_RWA = (Delta - omega_d) * 6.5 * gt.sigmaz() + A / 4 * qt.sigmax()

me_result RWA = gt.mesolve(H RWA, psi®, tlist, c_ops=c_ops me RWA, e ops=e ops) 38



1. QuTiP-Core: adding time-dependence to the system

Time-dependent systems: Consider a standard example of a driven qubit with the time-dependent
Hamiltonian

H=—0,+ —sin

A A
2 2

We also include dissipation with rate 7}

1.0

0.5/

(O07)

0.0

| - mesolve (time-dep)
1 (a) mesolve (rwa)
I‘l - = heomsolve
= = brmesolve
-
. 4 l\
R WA AN
ARV
i ' s
t?
Vv
0 200 400 600 800 1000

t/A1

(wdt)()'g;

(A = 0.01A

~ = 0.005A/(27)

Is this always correct? No!

Come back tomorrow to see when we should do
something a bit more complicated
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Overview:

* History and background of QuTiP

e QuTiP main functionality: noise simulation and open system dynamics
* QuTiP v5: what has changed?

e QuTiP-QIP: pulse-level simulator of quantum circuits

e Role of QuTiP and QuTiP-QIP in the future?

* More developed circuit simulator?
* Cloud-computer backends (lonQ, IBM, etc)?



What is Qutip 5

Major rework of the core of QuTiP:

e How Quantum object data is stored:
o No longer limiter to scipy CSR
o Dense, Sparse, GPU
® Quantum solver improvements:
o Uniform class interface
o Various choice of ODE solvers
o Better HEOM solver
o New non-markovian mcsolve method
e New features:
o Animations
o Better bloch sphere.
o Dimension class
e More stability:
o Support for cython 3
o Better tests (70% to 85% coverage)

Some Statistics

33 Contributors

>5 GSoC students

~4 years of development

286 Merged pull requests (out of 1245)
1984 Commits (out of 10560)

Nearly half of github history

(First vb PR: #1282, now #2360)



Stage 1: Data Layer, Summer 2020

2. Abstraction of the quantum object class (qutip.qobj.Qobj)
[Completed as a GSOC 2020 project]

QuTiP's Qobj class uses sparse matrices (csr) to store data by default. Recently, we have had some issues due to using
int32 for the sparse matrix indices in QuTiP (see #845, #842, #828, #853). Also, in smaller problems, using a sparse
matrix for storing data is not optimal, (see the detailed discussion by @agpitch in #437). Therefore there needs to be an
abstraction of the quantum object class such that one can use any structure to store the underlying data. A starting
point would be the possibility to switch between dense/sparse/int32/int64 and then to determine what other parts of
the code are affected by this change. The disentangling of the matrix representation of the data has several benefits
which can allow us to use other types of linear algebra tools (Numba, TensorFlow). This project would be challenging as
the components are integral to the library and hence changes would have wide-reaching implications. Even beyond
GSoC, the abstraction of the quantum object class can lead to some very interesting directions for QuTiP.

But as a first goal, enabling int32/int64 indices for sparse along with a switch for dense/sparse in a consistent manner
should be within the timeline for GSoC 2019.

Read the relevant discussions -

Expected outcomes

« An encapsulation of the quantum object class which can switch between dense/sparse matrices with the possibility
of int32/int64 for indices
« Updating of other parts of the code which assume default sparse behavior of Qobj

 Performance analysis.

Skills

+ Git, python and familiarity with the Python scientific computing stack

Started with feeling limited by Qobj’s fastsparse’
CSR format.

Can we allow for arbitrary data formats, and
make them interchangeable?

Jake Lishman who was actively contributing took it
as GSoC 2020 project, supervised by Eric Giguere

‘dev.major branch created in June 2020.

By August 2020:

CSR, Dense created

fastsparse removed

dispatcher created

Over 20000 lines of code changed.



Stage 1: Data Layer, Summer 2020

Most objects in QuTiP will come with a default data-type mostly suitable for it:
* Basis() will return a dense state

* Destroy() and identity qeye() will return a diagonal sparse format

* Pauli matrices (sigmaz() etc) will return sparse CSR:

# Different types of default operator creator methods will default to different types

type(qt.qgeye(3).data), type(qt.basis(3, 2).data), type(qt.sigmax().data)

—

v (qutip.core.data.dia.Dia, qutip.core.data.dense.Dense, qutip.core.data.csr.CSR)

el

We can override this default behavior by manually setting dtype, or using a default_dtype to override:

# Thi b idd
o 15 can be overriddaen [ ] with gt.CoreOptions(default_dtype="dense"):
qt.geye(3, dtype='csr').data op = qt.qeye(3)

op.data

3+ Dense(shape=(3, 3), fortran=True)
3¥ CSR(shape=(3, 3), nnz=3)
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Stage 1: Data Layer, Summer 2020

Important change: to obtain the underlying data structure, new call is:

° op = qutip.qgeye(3)
type(op.data_as())

4]

scipy.sparse._dia.dia_matrix
def __init_ (argl, shape=None, dtype=None, copy=False)

Sparse matrix with DIAgonal storage
This can be instantiated in several ways:

dia_array(D)
with a dense matrix

To manually change an object from one data format to another we can do:

o #data conversion can be done manually

gt.geye(3).to('dense’).data

—

v Dense(shape=(3, 3), fortran=False)

Tl

Qobj.full() alwaysreturns a dense numpy array

- )
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Stage 1: Data Layer, Summer 2020

Arithmetic between different data types can be optimal (or not!):

e csr @ dense <-- Fast
* dense @ csr <-- Slow
* dia @ dense <- Fast in both direction.

dense = gt.coherent dm(100, 5)
gt.destroy (160, dtype='dia')
csr = qt.destroy (100, dtype='csr')
%»timeit csr @ dense

%»timeit dia @ dense

%»timeit dense @ csr

%»timeit dense @ dia

dia

50.8 us * 13.7 pus per loop (mean std. dev. of 7 runs, 10000 loops each)
19.2 ps + 2.92 ps per loop (mean std. dev. of 7 runs, 100000 loops each)
219 pus * 8.05 ps per loop (mean t std. dev. of 7 runs, 1000 loops each)
17 us * 626 ns per loop (mean * std. dev. of 7 runs, 10000 loops each)

I+ 1+

*
*

%timeit csr @ dense @ csr.dag()
%timeit dia @ dense @ dia.dag()

379 us = 91.4 pus per loop (mean t std. dev. of 7 runs, 1000 loops each)
38.8 pus * 921 ns per loop (mean * std. dev. of 7 runs, 10000 loops each)
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Stage 2: GPU, Fall 2022, QuTiP-JAX

The main purpose of this work was to enable more complex data formats to be
added smoothly. First attempts with cuPY and tensorflow were abandoned in favour of

the popular JAX library: yo [5) oo et
A @GoogleDeepMind

Many people are now moving code into Jax. To get up to speed, Julian
suggests exploring the DeepMind Haiku library, designed to help you
implement deep reinforcement learning algorithms. Explore it here:

bit.ly/2zBlkpR #AtHomeWithAl

Transformable numerical computing at scale 10:18 PM - May 7, 2020

r/learnmachinelearning - 2 yr. ago
Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs < a (deleted] il
Is JAX a better choice to focus on over PyTorch now?
What is JAX?

I assumed PyTorch had won the deep learning wars from what I've seen in industry but FChollet has been saying JAX is
actually winning.

JAX is a Python library for accelerator-oriented array computation and program transformation, designed for high-

What have you all seen? Is he just talking his book and a bit delusional like he used to be when saying TensorFlow was
performance numerical computing and large-scale machine learning. winning or is he right this time?

\ Francois Chollet ¢

With its updated version of Autograd, JAX can automatically differentiate native Python and NumPy functions. It can
differentiate through loops, branches, recursion, and closures, and it can take derivatives of derivatives of derivatives.
It supports reverse-mode differentiation (a.k.a. backpropagation) via grad as well as forward-mode differentiation,
and the two can be composed arbitrarily to any order.

It's striking how the maijority of top players in

What's new is that JAX uses XLA to compile and run your NumPy programs on GPUs and TPUs. Compilation happens generative Al seem to be using JAX (eg Cohere,
under the hood by default, with library calls getting just-in-time compiled and executed. But JAX also lets you just-in-

time compile your own Python functions into XLA-optimized kernels using a one-function API, jit . Compilation and CharaCter’ Mldjourney, Deepl\/llnd, Anthroplc’
automatic differentiation can be composed arbitrarily, so you can express sophisticated algorithms and get maximal Apple, etc.). The main reasons: it's fast, it scales
performance without leaving Python. You can even program multiple GPUs or TPU cores at once using pmap , and rea”y well. and it has great TPU support

differentiate through the whole thing.



Stage 2: GPU, Fall 2022, QuTiP-JAX

New data-layer implemented by Eric as QuTiP-JAX plugin
Broader support across QuTiP enabled by GSOC project (2024, Rochisha Agarwal)

Custom DIA sparse format
Diffrax ODE solver
Autodifferentiation (take gradients of functions!)

def f(t):
with gt.CoreOptions(default dtype="jax"):
oper = gt.destroy(10) + gt.create(10)
oper = (-1j*t*oper).expm("jax")
out = gt.basis(10, 5).dag() @ oper @ gqt.basis(16, 9)
return out.real

jax.grad(f)(1.)

Array(0.62375522, dtype=float64, weak type=True)
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Stage 2: GPU, Fall 2022, QuTiP-JAX

GPU support gives some speedup on large problems (without any explicit effort to

parallelize) é N é é §

N N-1
1 ' +1
Hsys = gz U,E;) - }E 0-_5;) ® 05; ) def Ising_wrapper(tlist,Jo):
i=1 i=1 N =4
go = 1

— (o) ZelE = B
/
2 o \‘\ === d(o{)/dJo
o i d(a;””)/dt options = {"method": "diffrax", "normalize output": False,
"stepsize_controller"” : PIDController(rtol=1e-5, atol=1e-5),
19 "solver": Tsit5(), "store_states": True}
,\/\ result_ising, szl = Ising_solve(N, g0, JO, gamma, tlist, options, data_type = 'jaxdia')
EN 0
@) return szl
~—
-1 with jax.default device(jax.devices("cpu™)[@0]):
with gt.CoreOptions(default dtype="jaxdia™):
—27 tlist = jnp.linspace(9,5,100)

grad _J@ = jax.jacrev(Ising wrapper,argnums=1)

grad JO list = grad_Jo(tlist,1.4)



Stage 2: GPU, Fall 2022, QuTiP-JAX

GPU support gives some speedup on large problems (without any explicit effort to
parallelize)
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Overview:

* History and background of QuTiP

e QuTiP main functionality: noise simulation and open system dynamics
* QuTiP v5: what has changed?

* QuTiP-QIP: pulse-level simulator of quantum circuits

e Role of QuTiP and QuTiP-QIP in the future?

* More developed circuit simulator?
* Cloud-computer backends (lonQ, IBM, etc)?



Recent significant development for circuit simulations:

“Pulse-level noisy quantum circuits with QuTiP”,

Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford,

Nathan Shammah, Quantum (2021), arXiv:2105.09902

il L

1.0

Population of |00}
(=]
[V

|0
B
0y —[X}-{z}-4 J}

@ Compile circuit

to pulses

L AA A
A A A
AA A A

@ Generate noisy

pulses

A A A

@ Solve dynamics

w

0 5 10 15 20
Time [us]

QASM Circuit

Qiskit
Cirq
Project Q

Processor

Spin chain
Cavity QED
Circuit QED

Optimal control

Noise

Decoherence
Amplitude noise
Cross-talk
Leakage error

Result

Density matrix

Evolution trajectory

1 Q% Single-qubit rotation around an axis
0 H H 3
10) L D a = x,y, 2 (color blue and orange)
|0) H } H g; Coupling strength (color green)
0) ’Y‘ ’F‘ 8 !Igrk ':I‘he Cl"[).t-it-i-l"l-?t-i[)llﬂ.ll(i(-} effective

R u interaction (color green)

(a) Quantum circuit example

5 m m
O m m

3 pm
% | ., r
Sl’i"l | II |
lel | f | |l
1 11 11
5, S
L EE B

(b) Spin chain model
51

A
Oz

O

X v i

O ' Yo
g,V V1T 11
Q5 A A
05> A A__A__A
a5t A A

Q52

[ =y
L= ]
- -_:

=

—i

(e) Superconducting qubit model

0 ana__ma o pelanetle ant,
O and AR indln
OF po el e

6 I B B s
O AL ARt
(25 snalli_an i nn_nctn e,
90 AR A N_Mall_fan
9 sl e

(d) Optimal control model

Google
Summer of Code



A toy example, quantum simulation of quantum dynamics

(ty) = e HaTHB)0)(0) [e_iﬂﬁdte_iﬂBdt]d/a,-f')((]),

Google
Summer of Code

Hy = %09) + %Uf) and

Hp = gag)af) .
trotter simulation = QubitCircuit (2)

trotter_simulation.add_gate("RZ", targets=[0], arg_value=(epsilonl * dt))
trotter_simulation.add_gate("RZ", targets=[1], arg_value=(epsilon2 * dt))

trotter_simulation.add_gate("H", targets=[0])
trotter_simulation.add_gate("RZX", targets=[0, 1], arg_value=g * dt * 2)
trotter_simulation.add_gate("H", targets=[0])
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A toy example, quantum simulation of quantum dynamics

qr —

Google
Summer of Code

do —

processor = SCQubits (num_qubits=2, tl1=2e5, t2=2eb)
processor.load_circuit(trotter_simulation)

# Since SCQubit are modelled as qutrit, we need three-level systems here.
init _state = tensor(basis(3, 0), basis(3, 1))

processor.plot_pulses()
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A toy example, quantum simulation of quantum dynamics

Google
Summer of Code

N-1

o0 8 N N H =H4 + Z Qj;(a;'- +a;) + Qj::z(a;r — aj)
j 0
0’:([ v——‘—
o + Z chl J 3+1 + chQO_j gj}—l—l’

A U\ '\
o O\ N
—1
2 _AMAMANA_MB A_O. Ha=Y" “alalasa,
o, A A A =0
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A toy example, quantum simulation of quantum dynamics

q —

Google
Summer of Code

qo —

processor.run_state(init_state)

1.0;

0.5;

iR

_0.5

(olM)

0 5 10 15 20
Time (1/&5)



Recent significant development for circuit simulations:

“Pulse-level noisy quantum circuits with QuTiP”,
Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford,
Nathan Shammah, Quantum (2021), arXiv:2105.09902
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Recent significant development for circuit simulations:

Future of QuTiP-QIP?

Spencer Churchill

release)

lonQ+ QuTiP - QIP < 3 providers to add support to qutip

Spencer Churchill (lonQ)

e “Potential to be the main academically independent QIP API” —

e Should we support as many hardware cloud platforms possible? This
is man-power intensive (qiskit backend already fails with giskit v1.0

e Maybe we can just make it as easy as possible for hardware

Motivations for integration with QuTiP

QCs have surpassed simulators. QuTiP is the largest community-
« Above 64 qubits, simulators can not controlled quantum SDK.

realistically be used to solve useful * Businesses can trust in wide support
problem and adoption of QuTiP.

* Validating complex algorithms » Consistent licensing is a motivation to
becomes difficult on a local simulator. rely on a FOSS SDK.

* More cooperation between university
and industry work.

Future work

QuTiP has an extensive low-level physical
implementation of quantum processes, but
the next step should be abstracting to
optimization and hybrid workflows that
utilize its strong foundation.

* Plan for and facilitate more integrations.

* A provider folder for all supported 3™ party
integrations.

» Better support for parameterized circuits.

* Native parameter binding for circuits would help
with many problems from chemistry to machine
learning.

* Further develop optimization tools.

* An extensible VQE function that can run on
various cloud backends.

* Create a library for higher-level algorithms.

* Help support adoption in industry by providing
useful tools that scale.




Conclusions and final thoughts

QuTiP is a constantly evolving package. Future goals include:
* More nuanced support for high performance computing
* Quasi-analytic representation of models

e Tensor network methods

What is the future for community driven software like QuTiP?

e Maintaining OSS is hard and time-intensive (academics need to write papers). People who do
commit effort and time to OSS often move to industry.

* How can we guarantee it has a future?

Relies on users; please tell us what you want, and what doesn’t work.
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