
QuTiP:
Applications from quantum technology and quantum

biology

Neill Lambert

Senior Research Scientist

RIKEN

Resources: https://arxiv.org/abs/2412.04705, Lambert at al., v5 review.
www.qutip.org
https://qutip2024.wordpress.com/ v5 release developer’s conference

1

QuTiP development recently supported by:

https://arxiv.org/abs/2412.04705
http://www.qutip.org/
https://qutip2024.wordpress.com/

• Studied at the University of Manchester (Tobias Brandes)

• 2005: JSPS Fellow @ The University of Tokyo (Prof. Akira Shimizu)

• 2008-...: @ RIKEN

2

2

Turing Joule

Part 1: History of QuTiP, v5 overview, and basic examples

Part 2: An example from quantum biology: photosynthesis, and a
more nuanced explanation of noise with non-Markovian methods

(HEOM)

Part 3: non-Markovian methods continued with input-output
HEOM and pseudomodes + some additional QuTiP features with

ENR states and more…

3

Part 1: History, v5 overview, basic examples

4

Overview:

• History and background of QuTiP

• QuTiP main functionality: noise simulation and open system dynamics

• QuTiP v5: what has changed?

• QuTiP-QIP: pulse-level simulator of quantum circuits

• Role of QuTiP and QuTiP-QIP in the future?
• More developed circuit simulator?

• Cloud-computer backends (IonQ, IBM, etc)?

5

QuTiP

Quantum software
2002 qoToolbox Matlab University of Auckland
2004 CHP C Berkeley, USA
2006 Qubiter C++ Artiste-qb, Canada
2007 QCF Matlab Oxford University
2009 PyQu Python Google
2010 QuBit C++ Steven Goodwin
2011 QuTiP Python Riken, Japan
2013 Q++ C++ Cybernet Systems Corp
2013 SQCT C++ University of Waterloo
2014 QuanSuite Java Artiste-qb
2014 QC PG qScript Google
2014 Quipper Haskell Dalhousie University
2015 Quantum++ C++ University of Waterloo
2016 QETLAB Matlab University of Waterloo
2016 Liqui|> F# Microsoft
2016 Quant. Fog Python Artiste-qb
2016 Qubiter Python Artiste-qb
2017 ProjectQ Python ETH Zurich
2017 Forest (QUIL)Python Rigetti
2017 QISKit Python IBM
2017 Quantum Optics.jl Julia Universität Innsbruck
2017 PsiQuaSP C++. Gegg M, Richter M

Based on qosf.org/project_list/

2018 Strawberry Fields Python Xanadu, Canada

2018 PennyLane Python Xanadu, Canada

2018 Quantum Dev Kit Q#. Microsoft

2018 QCGPU Rust, OpenCl Adam Kelly

2018 NetKet C++ The Simons Foundation

2018 OpenFermion Python Google, Harvard, ETH ..

2018 CirQ Python Google

2018 Qulacs Python QunaSys, Osaka, NTT, Fujitsu
2019 Yao.jl Julia Luo and Liu

2020 TensorFlow Q Python Google

2021 Pulser Python Pasqal

2021 MitiQ Python Unitary Fund
+………….. Many more!

6

QuTiP history
2012: QuTiP v1 release: Functionality comparable to Matlab’s quantum optics toolbox

2013: QuTiP v2 release: Time-dependent Hamiltonian support, Bloch-Redfield solver, Floquet-Markov solver

2014: QuTiP v3 release: Stochastic master equation, steady-state solvers, first release of qutip.qip module (circuit simulator)

2016: QuTiP v4 release: HEOM solver, quantum optimal control (Alex Pitchford and myself begin to contribute)

….. minor releases including PIQs solver (Nathan and Shahnawaz), updates to HEOM and optimal control solvers.
Robert Johansson and Paul Nation move on to new careers (Rakuten and IBM-Q, respectively), period of crisis!

2018/2019: New development team formed during RIKEN workshop, new guidelines for administration and developer responsibilities

7

Nathan Shammah
(RIKEN, now Unitary
Fund)

Shahnawaz Ahmed
(RIKEN, now Chalmers)

Alex Pitchford
(Aberystwyth)

Eric Giguere
(Sherbrooke)

2019: V4.4: QobjEvo introduced, and first Google Summer of Code (GSOC) engagement and students.
2020: v4.5: Major update to QuTiP-QIP (result of GSOC student project of Boxi Li)
2021: v4.6: OpenQASM support, QuTiP-QIP further development, better support for Windows (to solve Cython woes)
2022: v4.7: Major update to HEOM solver, Krylov subspace solver, etc..

Current administration and development team

Additional contributors

•Denis Vasilyev (Leibniz)

•Kevin Fischer (Stanford)

•Anubhav Vardhan (New Dehli, India)

•Markus Baden (Zurich, Switzerland)

•Jonathan Zoller (Ulm University)

•Ben Criger (RWTH Aachen)

•Ben Bartlett (Stanford)

•Piotr Migdał (Warsaw, Poland)

•Arne Grismo (Amazon)

•Cassandra Granade (Microsoft)

+ 100s more

Advisory board:

Franco Nori, RIKEN

Anton Frisk Kockum, Chalmers

Robert Johansson, Rakuten

Daniel Burgarth, Erlangen

Will Zheng, Unitary Fund 8

Nathan Shammah
Unitary Fund, former
RIKEN postdoc

Shahnawaz Ahmed
Chalmers, former
RIKEN intern

Alex Pitchford
Aberystwyth

Eric Giguere
Sherbrooke

Boxi Li, Julich,
Former GSOC

Jake Lishman
IBM, former GSOC
Note: quasi-retired

Simon Cross
Zurich Instr.,
former RIKEN
Tech. Staff.

Asier Galacia,
Julich, former GSOC

Paul Menczel,
RIKEN

Patrick Hopf
Munich, RIKEN intern

Neill Lambert
RIKEN

QuTiP history

9

Developer’s workshop @ RIKEN, March 2024, v5 released!

Recent development team expanded through:

Google Summer of Code

10

GSOC has been hugely beneficial to QuTiP, and led to many new features, including QuTiP-QIP, and the
data layer which forms the backbone of QuTiP v5.

2019-2024 we have supported 16 GSOC projects (2-3 per year).

Three of these students joined the admin team after continued contributions

Boxi Li, Julich,
Project: QuTiP-QIP

Jake Lishman, Imperial
Project: new data layer
Note: already quasi-retired (IBM-Q)

Asier Galacia, Julich
Project: QuTiP-TensorFlow

11

Statistics and growth: https://www.wheelodex.org/projects/qutip/rdepends/

• AtomCalc (simulates atomic energy level shifts in laser
fields)
• bosonic-qiskit (National Quantum Initiative Co-design
Center for Quantum Advantage bosonic Qiskit
simulator)
• chalmers-qubit (A simulator of the Chalmers device to
be used with qutip-qip)
• dynamiqs (High-performance quantum systems
simulation with JAX (GPU-accelerated & differentiable
solvers)
• filter_functions (A package for efficient numerical
calculation of generalized filter functions to describe the
effect of noise on quantum gate operations)
• kqcircuits (KQCircuits is a KLayout/Python-based
superconducting quantum circuit library developed by
IQM)
• netket (Machine Learning toolbox for many-body
quantum systems)
•qiskit-metal (for quantum device design & analysis)
•scqubits (superconducting qubits in Python)
•SQcircuit (superconducting quantum circuit analyzer)

Some interesting dependent package highlights:

12

Installing QuTiP:

There are simple cloud options, but these are limited in compute power:

• Google collab: e.g., companion notebook for this talk

Local browser-based options:

• https://qutip.org/try-qutip/
• Runs QuTiP in your browser

• QuTiP Virtual Lab (https://qutip.org/qutip-virtual-lab.html).

Local install with:

➢ pip install qutip
or for anaconda
➢ conda install qutip

Note: windows users, solve all your problems by using Windows Subsystems for Linux (WSL)

https://www.google.com/url?q=https%3A%2F%2Fqutip.org%2Fqutip-virtual-lab.html

Overview:

• History and background of QuTiP

• QuTiP main functionality: noise simulation and open system dynamics

• QuTiP v5: what has changed?

• QuTiP-QIP: pulse-level simulator of quantum circuits

• Role of QuTiP and QuTiP-QIP in the future?
• More developed circuit simulator?

• Cloud-computer backends (IonQ, IBM, etc)?

13

14

Qobj

Overview of QuTiP Functionality
1. QuTiP-Core

2. QuTiP-Packages

Solvers

QIP: Pulse-based Quantum Circuit

Simulator
allows circuits to be run on different hardware

backend simulations at the level of time-dependent

pulses and noise.

QOC: Quantum Optimal Control

Package
supports for CRAB, GRAPE and GOAT algorithms.

JAX: JAX Data Layer
supports the popular JAX package, allowing for

GPU and autograd.

mesolve
Lindblad master equation

mcsolve + nm_mcsolve
Monte-Carlo master
equation

brmesolve
Bloch-Redfield master
equation

fmmesolve
Floquet master equation

Data Layer
Dense, CSR and DIA

Functions
Eigenstates, Matrix elements, Norms, etc.

Utility Functions
Entanglement measures, Distances,

Superoperator representations (Choi, Kraus, etc.),

Channels, ENR states, Two-time correlation

functions and spectra, MPI support, etc.

krylovsolve
Krylov subspace solver

smesolve
Stochastic master equation

HEOMsolver
Hierarchical equations of
motion

PIQS
Permutational invariant
systems

Qobj

class

Data

Type

Hermitian?

Dimensions

Shape

Packages

Extension

QuTiP-
Core

System
+

Environment

Initial

State
Result

15

Qobj1. QuTiP-Core Data Layer
Dense, CSR and DIA

Functions
Eigenstates, Matrix elements, Norms, etc.

Utility Functions
Entanglement measures, Distances,

Superoperator representations (Choi, Kraus, etc.),

Channels, ENR states, Two-time correlation

functions and spectra, MPI support, etc.

Qobj

class

Data

Type

Hermitian?

Dimensions

Shape

States and operators can be defined from arrays, or use predefined common structures.

16

1. QuTiP-Core, quantum object properties
All objects have a set of properties, most of which the user doesn’t need to see

Dims, or dimensions, are mostly usefully thought of as
maps:

• States (bra and kets), which are vectors, map vectors to
scalars

• Operators, which are matrices, map vectors to vectors

• Super-operators, which are also matrices, map vectorized
operators to vectorized operators (see later)

• Compound (tensor) objects operate in the same way, but
dims properties store the compound structure

17

1. QuTiP-Core, object arithmetic
We can perform basic arithmetic with quantum objects; the rules are similar to standard matrix arithmetic

18

1. QuTiP-Core, object methods (functions)
There are many inbuilt functions, or methods, in quantum objects to perform common tasks:

19

1. QuTiP-Core, state vectors
When using QuTiP you normally need to make states and operators, and use them in some way.
There are several convenient ways to build up the objects you might need:

It's common in discrete quantum systems to make a
basis out of Fock states which describes a
excitation in the n-th level of the system

20

1. QuTiP-Core, Fock states and coherent states

When considering single-mode cavities Fock states are often thought of as labelling the number of photons in the mode,
but coherent states and superpositions are also possible (among many more):

21

1. QuTiP-Core, operators
Annihilation and creation operators are also commonly used to create operators which connect Fock states:

22

1. QuTiP-Core, Fock state truncation
Note: The creation and annihilation operators for Bosons should obey the commutation relation:

Numerical truncation of infinite dimensional Hilbert space will always include this error; usually
it is sufficient to choose a cut-off much larger than the states of interest, and things will be ok!

23

1. QuTiP-Core, tensor of composite systems
Composite systems (states): When we try to model two systems, like multiple spins, or a spin interacting with a
cavity, we must take the tensor product of their spaces.

For example, the tensor product of two two-level systems gives us four possible states: 00, 01, 10, 11.

Note the dimensions are composite: the dims list [[2,2],[1,1]], tells us this is the tensor of
two vectors.

A single 4-level system would have dims [[4], [1]].

24

1. QuTiP-Core, partial trace
Composite systems:
Sometimes we wish to remove information, or trace out, about one subsystem.
This is commonly used to make statistical mixtures (density operators) out of pure states on a larger space.

The act of tracing out introduces statistical uncertainty in the state of the subsystem.
QuTiP supports this with the 'ptrace' class method.
ptrace takes as an argument a list of integers determining which subsystems to keep.

25

1. QuTiP-Core, composite operators

Composite systems (operators):
If we want to create a Pauli operator that acts on the first qubit and leaves the second qubit unaffected, we would do:

Above we used the qeye(N) function, which generates the identity operator with N quantum states

26

1. QuTiP-Core, composite operators

Composite systems (Hamiltonians):
By combining all this functionality (operators, arithmetic, tensor structure), we can define useful things like
Hamiltonians!

27

1. QuTiP-Core: Schrodinger equation

With states and operators (Hamiltonians) we are in a good position to solve something like the
Schrodinger equation!

Numerically we have a few options (depending on if H itself is time-dependent or not!)

• Just exponentiate the Hamiltonian [easy with qutip, U=(-1.0j * t * H).expm()]:

• In practice, this is not ideal for large problems (U is a very dense object), but useful if you want to
try many different initial conditions with the same propagator (also see propagator() function)

• More commonly, we simply case the equation as a coupled initial-value problem ODE, and
treat it with standard numerical ODE techniques (Runge-Kutte, Adams, Vern, are all provided
as options).

28

1. QuTiP-Core Solvers
mesolve

Lindblad master equation

mcsolve + nm_mcsolve
Monte-Carlo master
equation

brmesolve
Bloch-Redfield master
equation

fmmesolve
Floquet master equation

krylovsolve
Krylov subspace solver

smesolve
Stochastic master equation

HEOMsolver
Hierarchical equations of
motion

PIQS
Permutational invariant
systems

System
+

Environment

Initial

State
Result

29

The result object contains information about how the solution went, and, importantly, a list of states for times provided in
tlist. Note: tlist does not set the time-step of the solver! That is dynamic and done internally.

1. QuTiP-Core: Schrodinger equation

30

We the states we can calculate expectation values of observables, like

Note, with qubits, the state basis(2,0) is the excited state!

(this is a little counter-intuitive, and catches people out)

Here the Schrodinger equation tells us that the qubits, when on
resonance just exchange energy with a frequency proportional to
their coupling strength

1. QuTiP-Core: Schrodinger equation

31

One of the primary features of QuTiP is in the easy ability to simulate open quantum systems.

In adding dissipation, we introduce classical uncertainty and move away from solving the
Schrodinger equation with pure states (vectors). Instead, we consider mixtures of pure states,
which most conveniently can be written as density operators (like mixtures of projection operators
onto pure states) of the form:

The most common equation of motion for open systems is a Lindblad master equation:

Dissipation:

1. QuTiP-Core: Dissipation and noise

32

The master equation in this form is a matrix – matrix ODE, not a matrix-vector ODE. This can
still be solved as is (Krauss representation), but for small system sizes it is convenient to instead
Convert it to a matrix-vector equation using the concept of ‘super-operators’.

Here we convert N X N density operators into 1 x N2 vectors, and
NxN operators into N2 x N2 superoperators (sometimes called Liouville space)

Dissipation: super-operators:

1. QuTiP-Core: Dissipation and noise

33

In this naïve example, the master equation just describes
damping on each qubit as a rate ‘gamma’ in their local basis.

The validity of this kind of phenomenological noise depends on
underlying physical parameter ranges.

1. QuTiP-Core: Dissipation and noise

34

1. QuTiP-Core Solvers
mesolve

Lindblad master equation

mcsolve + nm_mcsolve
Monte-Carlo master
equation

brmesolve
Bloch-Redfield master
equation

fmmesolve
Floquet master equation

krylovsolve
Krylov subspace solver

smesolve
Stochastic master equation

HEOMsolver
Hierarchical equations of
motion

PIQS
Permutational invariant
systems

System
+

Environment

Initial

State
Result

For this reason qutip has many more solvers! something we will revisit in part 2!

35

Spin-boson model: e.g., Bloch-Redfield

With a bit more work (!) one can arrive at something like

36

1. QuTiP-Core: adding time-dependence to the system

Time-dependent systems: We often need to capture coherent classical driving of a quantum system, which
can require introducing time-dependent operators into a Hamiltonian.

In QuTiP we provide a generalization of the Qobj() for time-dependent problems: QobjEvo().

QobjEvo() can be instantiated with a list to represent objects like

With

where the time-dependent functions are given by one of:

• A python function, which takes as an argument the time and returns a scalar:

• A string which corresponds to a valid combination of Python functions:

• An array of values for different times (useful for costly complex functions or experimental data).
• Intermediate undefined values are interpolated.

37

Time-dependent systems: Consider a standard example of a driven qubit with the time-dependent
Hamiltonian

We also include dissipation with rate

First define time-dependence (functional here):

Then define time-dependent operators (actually
calling QobjEvo() is optional):

1. QuTiP-Core: adding time-dependence to the system

38

Time-dependent systems: Consider a standard example of a driven qubit with the time-dependent
Hamiltonian

We also include dissipation with rate

Call Lindblad master equation with either just lists or QobjEvo()

Lets compare to Rotating wave approximation Hamiltonian:

1. QuTiP-Core: adding time-dependence to the system

39

Time-dependent systems: Consider a standard example of a driven qubit with the time-dependent
Hamiltonian

We also include dissipation with rate

Is this always correct? No!

Come back tomorrow to see when we should do
something a bit more complicated

1. QuTiP-Core: adding time-dependence to the system

Overview:

• History and background of QuTiP

• QuTiP main functionality: noise simulation and open system dynamics

• QuTiP v5: what has changed?

• QuTiP-QIP: pulse-level simulator of quantum circuits

• Role of QuTiP and QuTiP-QIP in the future?
• More developed circuit simulator?

• Cloud-computer backends (IonQ, IBM, etc)?

40

41

What is Qutip 5
Major rework of the core of QuTiP:

● How Quantum object data is stored:
○ No longer limiter to scipy CSR
○ Dense, Sparse, GPU

● Quantum solver improvements:
○ Uniform class interface
○ Various choice of ODE solvers
○ Better HEOM solver
○ New non-markovian mcsolve method

● New features:
○ Animations
○ Better bloch sphere.
○ Dimension class

● More stability:
○ Support for cython 3
○ Better tests (70% to 85% coverage)

Some Statistics

● 33 Contributors
● >5 GSoC students
● ~4 years of development
● 286 Merged pull requests (out of 1245)
● 1984 Commits (out of 10560)
● Nearly half of github history

(First v5 PR: #1282, now #2360)

42

Stage 1: Data Layer, Summer 2020
Started with feeling limited by Qobj’s `fastsparse`
CSR format.

Can we allow for arbitrary data formats, and
make them interchangeable?

Jake Lishman who was actively contributing took it
as GSoC 2020 project, supervised by Eric Giguere

`dev.major` branch created in June 2020.

By August 2020:

● CSR, Dense created
● fastsparse removed
● dispatcher created
● Over 20000 lines of code changed.

43

Stage 1: Data Layer, Summer 2020

Most objects in QuTiP will come with a default data-type mostly suitable for it:
• Basis() will return a dense state
• Destroy() and identity qeye() will return a diagonal sparse format
• Pauli matrices (sigmaz() etc) will return sparse CSR:

We can override this default behavior by manually setting dtype, or using a default_dtype to override:

44

Stage 1: Data Layer, Summer 2020
Important change: to obtain the underlying data structure, new call is:

To manually change an object from one data format to another we can do:

always returns a dense numpy array

45

Stage 1: Data Layer, Summer 2020
Arithmetic between different data types can be optimal (or not!):

46

Stage 2: GPU, Fall 2022, QuTiP-JAX

The main purpose of this work was to enable more complex data formats to be
added smoothly. First attempts with cuPY and tensorflow were abandoned in favour of
the popular JAX library:

47

Stage 2: GPU, Fall 2022, QuTiP-JAX

New data-layer implemented by Eric as QuTiP-JAX plugin

Broader support across QuTiP enabled by GSOC project (2024, Rochisha Agarwal)

• Custom DIA sparse format
• Diffrax ODE solver
• Autodifferentiation (take gradients of functions!)

48

Stage 2: GPU, Fall 2022, QuTiP-JAX

GPU support gives some speedup on large problems (without any explicit effort to
parallelize)

49

Stage 2: GPU, Fall 2022, QuTiP-JAX

GPU support gives some speedup on large problems (without any explicit effort to
parallelize)

sesolve() mesolve()

Overview:

• History and background of QuTiP

• QuTiP main functionality: noise simulation and open system dynamics

• QuTiP v5: what has changed?

• QuTiP-QIP: pulse-level simulator of quantum circuits

• Role of QuTiP and QuTiP-QIP in the future?
• More developed circuit simulator?

• Cloud-computer backends (IonQ, IBM, etc)?

50

Recent significant development for circuit simulations:
“Pulse-level noisy quantum circuits with QuTiP”,
Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford,
Nathan Shammah, Quantum (2021), arXiv:2105.09902

arXiv:2105.09902
arXiv:2105.09902

51

A toy example, quantum simulation of quantum dynamics

arXiv:2105.09902
arXiv:2105.09902

52

A toy example, quantum simulation of quantum dynamics

arXiv:2105.09902
arXiv:2105.09902

53

A toy example, quantum simulation of quantum dynamics

arXiv:2105.09902
arXiv:2105.09902

54

A toy example, quantum simulation of quantum dynamics

arXiv:2105.09902
arXiv:2105.09902

55

Recent significant development for circuit simulations:
“Pulse-level noisy quantum circuits with QuTiP”,
Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford,
Nathan Shammah, Quantum (2021), arXiv:2105.09902

arXiv:2105.09902
arXiv:2105.09902

56

Pros of QuTiP-QIP:

• Designed for pulse-level noisy
simulations, can take advantage of
QuTiP solvers

• Comparable in purpose to qiskit-pulse
and pulser

• openQASM 2 support

Cons:

• No circuit optimization

• Limited circuit
transpilation/compilation to hardware
native gates

• Efficiency not prioritized

Improvement of compilation
to native gates underway.

Recent significant development for circuit simulations:

arXiv:2105.09902
arXiv:2105.09902

57

Future of QuTiP-QIP?

• “Potential to be the main academically independent QIP API” –
Spencer Churchill

• Should we support as many hardware cloud platforms possible? This
is man-power intensive (qiskit backend already fails with qiskit v1.0
release)

• Maybe we can just make it as easy as possible for hardware
providers to add support to qutip

Conclusions and final thoughts

QuTiP is a constantly evolving package. Future goals include:

• More nuanced support for high performance computing

• Quasi-analytic representation of models

• Tensor network methods

What is the future for community driven software like QuTiP?

• Maintaining OSS is hard and time-intensive (academics need to write papers). People who do
commit effort and time to OSS often move to industry.

• How can we guarantee it has a future?

Relies on users; please tell us what you want, and what doesn’t work.
58

